ترغب بنشر مسار تعليمي؟ اضغط هنا

In neutral graphene, two prominent cusps known as Kohn anomalies are found in the phonon dispersion of the highest optical phonon at $q=Gamma$ (LO branch) and $q=K$ (TO branch), reflecting a significant electron-phonon coupling to undoped Dirac elect rons. In this work, high-resolution electron energy loss spectroscopy is used to measure the phonon dispersion around the $Gamma$ point in quasi-freestanding graphene epitaxially grown on Pt(111). The Kohn anomaly for the LO phonon is observed at finite momentum $qsim2k_F$ from $Gamma$, with a shape in excellent agreement with the theory and consistent with known values of the EPC and the Fermi level. More strikingly, we also observe a Kohn anomaly at the same momentum for the out-of-plane optical phonon (ZO) branch. This observation is the first direct evidence of the coupling of the ZO mode with Dirac electrons, which is forbidden for freestanding graphene but becomes allowed in the presence of a substrate. Moreover, we estimate the EPC to be even greater than that of the LO mode, making graphene on Pt(111) an optimal system to explore the effects of this new coupling in the electronic properties.
When the phonon spectrum of a material is measured in a scattering experiment, selection rules preclude the observation of phonons that are odd under reflection by the scattering plane. Understanding these rules is crucial to correctly interpret expe riments and to detect broken symmetries. Taking graphene as a case study, in this work we derive the complete set of selection rules for the honeycomb lattice, showing that some of them have been missed or misinterpreted in the literature. Focusing on the technique of high-resolution electron energy loss spectroscopy (HREELS), we calculate the scattering intensity for a simple force constant model to illustrate these rules. In addition, we present HREELS measurements of the phonon dispersion for graphene on Ru(0001) and find excellent agreement with the theory. We also illustrate the effect of different symmetry breaking scenarios in the selection rules and discuss previous experiments in light of our results.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا