ترغب بنشر مسار تعليمي؟ اضغط هنا

Clustering artworks is difficult for several reasons. On the one hand, recognizing meaningful patterns based on domain knowledge and visual perception is extremely hard. On the other hand, applying traditional clustering and feature reduction techniq ues to the highly dimensional pixel space can be ineffective. To address these issues, in this paper we propose DELIUS: a DEep learning approach to cLustering vIsUal artS. The method uses a pre-trained convolutional network to extract features and then feeds these features into a deep embedded clustering model, where the task of mapping the raw input data to a latent space is jointly optimized with the task of finding a set of cluster centroids in this latent space. Quantitative and qualitative experimental results show the effectiveness of the proposed method. DELIUS can be useful for several tasks related to art analysis, in particular visual link retrieval and historical knowledge discovery in painting datasets.
This paper presents our ongoing work towards ArtGraph: an artistic knowledge graph based on WikiArt and DBpedia. Automatic art analysis has seen an ever-increasing interest from the pattern recognition and computer vision community. However, most of the current work is mainly based solely on digitized artwork images, sometimes supplemented with some metadata and textual comments. A knowledge graph that integrates a rich body of information about artworks, artists, painting schools, etc., in a unified structured framework can provide a valuable resource for more powerful information retrieval and knowledge discovery tools in the artistic domain.
In this paper, we propose a novel method for mild cognitive impairment detection based on jointly exploiting the complex network and the neural network paradigm. In particular, the method is based on ensembling different brain structural perspectives with artificial neural networks. On one hand, these perspectives are obtained with complex network measures tailored to describe the altered brain connectivity. In turn, the brain reconstruction is obtained by combining diffusion-weighted imaging (DWI) data to tractography algorithms. On the other hand, artificial neural networks provide a means to learn a mapping from topological properties of the brain to the presence or absence of cognitive decline. The effectiveness of the method is studied on a well-known benchmark data set in order to evaluate if it can provide an automatic tool to support the early disease diagnosis. Also, the effects of balancing issues are investigated to further assess the reliability of the complex network approach to DWI data.
Clustering artworks is difficult for several reasons. On the one hand, recognizing meaningful patterns in accordance with domain knowledge and visual perception is extremely difficult. On the other hand, applying traditional clustering and feature re duction techniques to the highly dimensional pixel space can be ineffective. To address these issues, we propose to use a deep convolutional embedding model for digitized painting clustering, in which the task of mapping the raw input data to an abstract, latent space is jointly optimized with the task of finding a set of cluster centroids in this latent feature space. Quantitative and qualitative experimental results show the effectiveness of the proposed method. The model is also capable of outperforming other state-of-the-art deep clustering approaches to the same problem. The proposed method can be useful for several art-related tasks, in particular visual link retrieval and historical knowledge discovery in painting datasets.
Visual arts are of inestimable importance for the cultural, historic and economic growth of our society. One of the building blocks of most analysis in visual arts is to find similarity relationships among paintings of different artists and painting schools. To help art historians better understand visual arts, this paper presents a framework for visual link retrieval and knowledge discovery in digital painting datasets. Visual link retrieval is accomplished by using a deep convolutional neural network to perform feature extraction and a fully unsupervised nearest neighbor mechanism to retrieve links among digitized paintings. Historical knowledge discovery is achieved by performing a graph analysis that makes it possible to study influences among artists. An experimental evaluation on a database collecting paintings by very popular artists shows the effectiveness of the method. The unsupervised strategy makes the method interesting especially in cases where metadata are scarce, unavailable or difficult to collect.
Abstract State Machines (ASMs) have been successfully applied for modeling critical and complex systems in a wide range of application domains. However, unlike other well-known formalisms, e.g. Petri nets, ASMs lack inherent, domain-independent chara cterisations of computationally important properties. Here, we provide an ASM-based characterisation of the starvation-free property. The classic, informal notion of starvation, usually provided in literature, is analysed and expressed as a necessary condition in terms of ASMs. Thus, we enrich the ASM framework with the notion of vulnerable rule as a practical tool for analysing starvation issues in an operational fashion
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا