ترغب بنشر مسار تعليمي؟ اضغط هنا

Weak scale supersymmetry (SUSY) remains a prime explanation for the radiative stability of the Higgs field. A natural account of the Higgs boson mass, however, strongly favors extensions of the Minimal Supersymmetric Standard Model (MSSM). A plausibl e option is to introduce a new supersymmetric sector coupled to the MSSM Higgs fields, whose associated states resolve the little hierarchy problem between the third generation squark masses and the weak scale. SUSY also accomodates a weakly interacting cold dark matter (DM) candidate in the form of a stable neutralino. In minimal realizations, the thus-far null results of direct DM searches, along with the DM relic abundance constraint, introduce a level of fine-tuning as severe as the one due to the SUSY little hierarchy problem. We analyse the generic implications of new SUSY sectors parametrically heavier than the minimal SUSY spectrum, devised to increase the Higgs boson mass, on this little neutralino DM problem. We focus on the SUSY operator of smallest scaling dimension in an effective field theory description, which modifies the Higgs and DM sectors in a correlated manner. Within this framework, we show that recent null results from the LUX experiment imply a tree-level fine-tuning for gaugino DM which is parametrically at least a few times larger than that of the MSSM. Higgsino DM whose relic abundance is generated through a thermal freeze-out mechanism remains also severely fine-tuned, unless the DM lies below the weak boson pair-production threshold. As in the MSSM, well-tempered gaugino-Higgsino DM is strongly disfavored by present direct detection results.
Light neutralino dark matter can be achieved in the Minimal Supersymmetric Standard Model if staus are rather light, with mass around 100 GeV. We perform a detailed analysis of the relevant supersymmetric parameter space, including also the possibili ty of light selectons and smuons, and of light higgsino- or wino-like charginos. In addition to the latest limits from direct and indirect detection of dark matter, ATLAS and CMS constraints on electroweak-inos and on sleptons are taken into account using a simplified models framework. Measurements of the properties of the Higgs boson at 125 GeV, which constrain amongst others the invisible decay of the Higgs boson into a pair of neutralinos, are also implemented in the analysis. We show that viable neutralino dark matter can be achieved for masses as low as 15 GeV. In this case, light charginos close to the LEP bound are required in addition to light right-chiral staus. Significant deviations are observed in the couplings of the 125 GeV Higgs boson. These constitute a promising way to probe the light neutralino dark matter scenario in the next run of the LHC.
Searches for Dark Matter (DM) particles with indirect detection techniques have reached important milestones with the precise measurements of the anti-proton and gamma-ray spectra, notably by the PAMELA and FERMI-LAT experiments. While the gamma-ray results have been used to test the thermal Dark Matter hypothesis and constrain the Dark Matter annihilation cross section into Standard Model (SM) particles, the anti-proton flux measured by the PAMELA experiment remains relatively unexploited. Here we show that the latter can be used to set a constraint on the neutralino-chargino mass difference. To illustrate our point we use a Supersymmetric model in which the gauginos are light, the sfermions are heavy and the Lightest Supersymmetric Particle (LSP) is the neutralino. In this framework the W^+ W^- production is expected to be significant, thus leading to large anti-proton and gamma-ray fluxes. After determining a generic limit on the Dark Matter pair annihilation cross section into W^+ W^- from the anti-proton data only, we show that one can constrain scenarios in which the neutralino-chargino mass difference is as large as ~ 20 GeV for a mixed neutralino (and intermediate choices of the anti-proton propagation scheme). This result is consistent with the limit obtained by using the FERMI-LAT data. As a result, we can safely rule out the pure wino neutralino hypothesis if it is lighter than 450 GeV and constitutes all the Dark Matter.
It was shown in a previous study that a lightest neutralino with mass below 30 GeV was severely constrained in the minimal supersymmetric standard model (MSSM), unless it annihilates via a light stau and thus yields the observed dark matter abundance . In such a scenario, while the stau is the next-to-lightest supersymmetric particle (NLSP), the charginos and the other neutralinos as well as sleptons of the first two families are also likely to be not too far above the mass bounds laid down by the Large Electron Positron (LEP) collider. As the branching ratios of decays of the charginos and the next-to-lightest neutralino into staus are rather large, one expects significant rates of tau-rich final states in such a case. With this in view, we investigate the same-sign ditau and tri-tau signals of this scenario at the Large Hadron Collider (LHC) for two MSSM benchmark points corresponding to light neutralino dark matter. The associated signal rates for these channels are computed, for the centre-of-mass energy of 14 TeV. We find that both channels lead to appreciable rates if the squarks and the gluino are not too far above a TeV, thus allowing to probe scenarios with light neutralinos in the 14 TeV LHC run with 10-100 fb^{-1}.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا