ترغب بنشر مسار تعليمي؟ اضغط هنا

We present the results of combining Hubble Space Telescope optical photometry with ground-based Ks-band photometry from the Gemini imagers NIRI and FLAMINGOS-I to study the globular-cluster populations in four early-type galaxies that are candidate r emnants of recent mergers (NGC1700, NGC2865, NGC4382, and NGC7727). These galaxies were chosen based on their blue colors and fine structure, such as shells and ripples that are indicative of past interactions. We fit the combined VIKs globular-cluster data with simple toy models of mixed cluster populations that contain three subpopulations of different age and metallicity. The fits, done via Chi-square mapping of the parameter space, yield clear evidence for the presence of intermediate-age clusters in each galaxy. We find that the ages of 1-2 Gyr for these globular-cluster subpopulations are consistent with the previously estimated merger ages for the host galaxies.
105 - Gelys Trancho 2007
We present Gemini optical spectroscopy of 23 young star clusters in NGC3256. We find that the cluster ages range are from few Myr to ~150 Myr. All these clusters are relatively massive (2--40)x 10^{5} msun$ and appear to be of roughly 1.5 zo metallic ity. The majority of the clusters in our sample follow the same rotation curve as the gas and hence were presumably formed in the molecular-gas disk. However, a western subsample of five clusters has velocities that deviate significantly from the gas rotation curve. These clusters may either belong to the second spiral galaxy of the merger or may have formed in tidal-tail gas falling back into the system. We discuss our observations in light of other known cluster populations in merging galaxies, and suggest that NGC 3256 is similar to Arp 220, and hence may become an Ultra-luminous Infrared Galaxy as the merger progresses and the star-formation rate increases. Some of the clusters which appeared as isolated in our ground-based images are clearly resolved into multiple sub-components in the HST-ACS images. The same effect has been observed in the Antennae galaxies, showing that clusters are often not formed in isolation, but instead tend to form in larger groups or cluster complexes.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا