ترغب بنشر مسار تعليمي؟ اضغط هنا

Time-dependent density-functional theory (TDDFT) is a powerful tool to study the non-equilibrium dynamics of inhomogeneous interacting many-body systems. Here we show that the simple adiabatic local-spin-density approximation for the time-dependent e xchange-correlation potential is surprisingly accurate in describing collective density and spin dynamics in strongly correlated one-dimensional ultracold Fermi gases. Our conclusions are based on extensive comparisons between our TDDFT results and accurate results based on the adaptive time-dependent density-matrix renormalization-group method.
Motivated by the large interest in the non-equilibrium dynamics of low-dimensional quantum many-body systems, we present a fully-microscopic theoretical and numerical study of the charge and spin dynamics in a one-dimensional ultracold Fermi gas foll owing a quench. Our approach, which is based on time-dependent current-density-functional theory, is applicable well beyond the linear-response regime and produces both spin-charge separation and spin-drag-induced broadening of the spin packets.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا