ترغب بنشر مسار تعليمي؟ اضغط هنا

The classification and regression head are both indispensable components to build up a dense object detector, which are usually supervised by the same training samples and thus expected to have consistency with each other for detecting objects accura tely in the detection pipeline. In this paper, we break the convention of the same training samples for these two heads in dense detectors and explore a novel supervisory paradigm, termed as Mutual Supervision (MuSu), to respectively and mutually assign training samples for the classification and regression head to ensure this consistency. MuSu defines training samples for the regression head mainly based on classification predicting scores and in turn, defines samples for the classification head based on localization scores from the regression head. Experimental results show that the convergence of detectors trained by this mutual supervision is guaranteed and the effectiveness of the proposed method is verified on the challenging MS COCO benchmark. We also find that tiling more anchors at the same location benefits detectors and leads to further improvements under this training scheme. We hope this work can inspire further researches on the interaction of the classification and regression task in detection and the supervision paradigm for detectors, especially separately for these two heads.
Deep learning has achieved remarkable progress for visual recognition on large-scale balanced datasets but still performs poorly on real-world long-tailed data. Previous methods often adopt class re-balanced training strategies to effectively allevia te the imbalance issue, but might be a risk of over-fitting tail classes. The recent decoupling method overcomes over-fitting issues by using a multi-stage training scheme, yet, it is still incapable of capturing tail class information in the feature learning stage. In this paper, we show that soft label can serve as a powerful solution to incorporate label correlation into a multi-stage training scheme for long-tailed recognition. The intrinsic relation between classes embodied by soft labels turns out to be helpful for long-tailed recognition by transferring knowledge from head to tail classes. Specifically, we propose a conceptually simple yet particularly effective multi-stage training scheme, termed as Self Supervised to Distillation (SSD). This scheme is composed of two parts. First, we introduce a self-distillation framework for long-tailed recognition, which can mine the label relation automatically. Second, we present a new distillation label generation module guided by self-supervision. The distilled labels integrate information from both label and data domains that can model long-tailed distribution effectively. We conduct extensive experiments and our method achieves the state-of-the-art results on three long-tailed recognition benchmarks: ImageNet-LT, CIFAR100-LT and iNaturalist 2018. Our SSD outperforms the strong LWS baseline by from $2.7%$ to $4.5%$ on various datasets. The code is available at https://github.com/MCG-NJU/SSD-LT.
Spatial downsampling layers are favored in convolutional neural networks (CNNs) to downscale feature maps for larger receptive fields and less memory consumption. However, for discriminative tasks, there is a possibility that these layers lose the di scriminative details due to improper pooling strategies, which could hinder the learning process and eventually result in suboptimal models. In this paper, we present a unified framework over the existing downsampling layers (e.g., average pooling, max pooling, and strided convolution) from a local importance view. In this framework, we analyze the issues of these widely-used pooling layers and figure out the criteria for designing an effective downsampling layer. According to this analysis, we propose a conceptually simple, general, and effective pooling layer based on local importance modeling, termed as {em Local Importance-based Pooling} (LIP). LIP can automatically enhance discriminative features during the downsampling procedure by learning adaptive importance weights based on inputs. Experiment results show that LIP consistently yields notable gains with different depths and different architectures on ImageNet classification. In the challenging MS COCO dataset, detectors with our LIP-ResNets as backbones obtain a consistent improvement ($ge 1.4%$) over the vanilla ResNets, and especially achieve the current state-of-the-art performance in detecting small objects under the single-scale testing scheme.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا