ترغب بنشر مسار تعليمي؟ اضغط هنا

Realistic quantum computing is subjected to noise. A most important frontier in research of quantum computing is to implement noise-resilient quantum control over qubits. Dynamical decoupling can protect coherence of qubits. Here we demonstrate non-t rivial quantum evolution steered by dynamical decoupling control, which automatically suppresses the noise effect. We designed and implemented a self-protected controlled-NOT gate on the electron spin of a nitrogen-vacancy centre and a nearby carbon-13 nuclear spin in diamond at room temperature, by employing an engineered dynamical decoupling control on the electron spin. Final state fidelities of 0.91 and 0.88 were observed even with imperfect initial states. In the mean time, the qubit coherence time has been elongated by at least 30 folds. The design scheme does not require that the dynamical decoupling control commute with the qubit interaction and works for general systems. This work marks a step toward realistic quantum computing.
We experimentally investigate the protection of electron spin coherence of nitrogen vacancy (NV) center in diamond by dynamical nuclear polarization. The electron spin decoherence of an NV center is caused by the magnetic ield fluctuation of the $^{1 3}$C nuclear spin bath, which contributes large thermal fluctuation to the center electron spin when it is in equilibrium state at room temperature. To address this issue, we continuously transfer the angular momentum from electron spin to nuclear spins, and pump the nuclear spin bath to a polarized state under Hartman-Hahn condition. The bath polarization effect is verified by the observation of prolongation of the electron spin coherence time ($T_2^*$). Optimal conditions for the dynamical nuclear polarization (DNP) process, including the pumping pulse duration and depolarization effect of laser pulses, are studied. Our experimental results provide strong support for quantum information processing and quantum simulation using polarized nuclear spin bath in solid state systems.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا