ترغب بنشر مسار تعليمي؟ اضغط هنا

Quantum computers are capable of efficiently contracting unitary tensor networks, a task that is likely to remain difficult for classical computers. For instance, networks based on matrix product states or the multi-scale entanglement renormalization ansatz (MERA) can be contracted on a small quantum computer to aid the simulation of a large quantum system. However, without the ability to selectively reset qubits, the associated spatial cost can be exorbitant. In this paper, we propose a protocol that can unitarily reset qubits when the circuit has a common convolutional form, thus dramatically reducing the spatial cost for implementing the contraction algorithm on general near-term quantum computers. This protocol generates fresh qubits from used ones by partially applying the time-reversed quantum circuit over qubits that are no longer in use. In the absence of noise, we prove that the state of a subset of these qubits becomes $|0ldots 0rangle$, up to an error exponentially small in the number of gates applied. We also provide a numerical evidence that the protocol works in the presence of noise. We also provide a numerical evidence that the protocol works in the presence of noise, and formulate a condition under which the noise-resilience follows rigorously.
Numerous conceptually important quantum algorithms rely on a black-box device known as an oracle, which is typically difficult to construct without knowing the answer to the problem that the algorithm is intended to solve. A notable example is Grover s search algorithm. Here we propose a Grover search for solutions to a class of NP-complete decision problems known as subset sum problems, including the special case of number partitioning. Each problem instance is encoded in the couplings of a set of qubits to a central spin or boson, which enables a realization of the oracle without knowledge of the solution. The algorithm provides a quantum speedup across a known phase transition in the computational complexity of the partition problem, and we identify signatures of the phase transition in the simulated performance. Whereas the naive implementation of our algorithm requires a spectral resolution that scales exponentially with system size for NP-complete problems, we also present a recursive algorithm that enables scalability. We propose and analyze implementation schemes with cold atoms, including Rydberg-atom and cavity-QED platforms.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا