ترغب بنشر مسار تعليمي؟ اضغط هنا

A scanning tunnelling microscope is used to pull a polythiophene wire from a Au(111) surface while measuring the current traversing the junction. Abrupt current increases measured during the lifting procedure are associated to the detachment of molec ular sub-units, in apparent contradiction with the expected exponential decrease of the conductance with wire length. textit{Ab initio} simulations reproduce the experimental data and demonstrate that this unexpected behavior is due to release of mechanical stress in the wire, paving the way to mechanically gated single-molecule electronic devices.
The electroluminescence of a polythiophene wire suspended between two metallic electrodes is probed using a scanning tunneling microscope. Under positive sample voltage, the spectral and voltage dependencies of the emitted light are consistent with t he fluorescence of the wire junction mediated by localized plasmons. This emission is strongly attenuated for the opposite polarity. Both emission mechanism and polarity dependence are similar to what occurs in organic light emitting diodes (OLED) but at the level of a single molecular wire.
88 - Gael Reecht 2013
Structural and electronic properties of oligothiophene nano-wires and rings synthesized on a Au(111) surface are investigated by scanning tunneling microscopy. The spectroscopic data of the linear and cyclic oligomers show remarkable differences whic h, to a first approximation, can be accounted by considering electronic states confinement to one-dimensional (1D) boxes having respectively fixed and periodic boundary conditions. A more detailed analysis shows that polythiophene must be treated as a ribbon (i.e. having an effective width) rather than a purely 1D structure. A fascinating consequence is that the molecular nano-rings act as whispering gallery mode resonators for electrons, opening the way for new applications in quantum-electronics.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا