ترغب بنشر مسار تعليمي؟ اضغط هنا

78 - Gabriel Pallier 2021
We characterize the Lie groups with finitely many connected components that are $O(u)$-bilipschitz equivalent (almost quasiisometric in the sense that the sublinear function $u$ replaces the additive bounds of quasiisometry) to the real hyperbolic sp ace, or to the complex hyperbolic plane. The characterizations are expressed in terms of deformations of Lie algebras and in terms of pinching of sectional curvature of left-invariant Riemannian metrics in the real case. We also compare sublinear bilipschitz equivalence and coarse equivalence, and prove that every coarse equivalence between the logarithmic coarse structures of geodesic spaces is a $O(log)$-bilipschitz equivalence. The Lie groups characterized are exactly those whose logarithmic coarse structure is equivalent to that of a real hyperbolic space or the complex hyperbolic plane.
For every $kgeqslant 3$, we exhibit a simply connected $k$-nilpotent Lie group $N_k$ whose Dehn function behaves like $n^k$, while the Dehn function of its associated Carnot graded group $mathsf{gr}(N_k)$ behaves like $n^{k+1}$. This property and its consequences allow us to reveal three new phenomena. First, since those groups have uniform lattices, this provides the first examples of pairs of finitely presented groups with bilipschitz asymptotic cones but with different Dehn functions. The second surprising feature of these groups is that for every even integer $k geqslant 4$ the centralized Dehn function of $N_k$ behaves like $n^{k-1}$ and so has a different exponent than the Dehn function. This answers a question of Young. Finally, we turn our attention to sublinear bilipschitz equivalences (SBE). Introduced by Cornulier, these are maps between metric spaces inducing bi-Lipschitz homeomorphisms between their asymptotic cones. These can be seen as weakenings of quasiisometries where the additive error is replaced by a sublinearly growing function $v$. We show that a $v$-SBE between $N_k$ and $mathsf{gr}(N_k)$ must satisfy $v(n)succcurlyeq n^{1/(2k + 1)}$, strengthening the fact that those two groups are not quasiisometric. This is the first instance where an explicit lower bound is provided for a pair of SBE groups.
139 - Gabriel Pallier 2019
This article analyzes sublinearly quasisymmetric homeo-morphisms (generalized quasisymmetric mappings), and draws applications to the sublinear large-scale geometry of negatively curved groups and spaces. It is proven that those homeomorphisms lack a nalytical properties but preserve a conformal dimension and appropriate function spaces, distinguishing certain (nonsymmetric) Riemannian negatively curved homogeneous spaces, and Fuchsian buildings, up to sublinearly biLipschitz equivalence (generalized quasiisometry).
147 - Gabriel Pallier 2018
Large-scale sublinearly Lipschitz maps have been introduced by Yves Cornulier in order to precisely state his theorems about asymptotic cones of Lie groups. In particular, Sublinearly biLipschitz Equivalences (SBE) are a weak variant of quasiisometri es, with the only requirement of still inducing biLipschitz maps at the level of asymptotic cones. We focus here on hyperbolic metric spaces and study properties of their boundary extensions, reminiscent of quasiM{o}bius mappings. We give a dimensional invariant on the boundary that allows to distinguish hyperbolic symmetric spaces up to SBE, answering a question of Druc{t}u.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا