ترغب بنشر مسار تعليمي؟ اضغط هنا

We present the first spectroscopic confirmation of an ultra-massive galaxy at redshift z>3 using data from Keck-NIRSPEC, VLT-Xshooter, and GTC-Osiris. We detect strong [OIII] and Ly$alpha$ emission, and weak [OII], CIV, and HeII, placing C1-23152 at a spectroscopic redshift of $z_{spec}$=3.351. The modeling of the emission-line corrected spectral energy distribution results in a best-fit stellar mass of $M_{*}=3.1^{+0.6}_{-0.7}times10^{11} M_{odot}$, a star-formation rate of <7 $M_{odot} yr^{-1}$, and negligible dust extinction. The stars appear to have formed in a short intense burst ~300-500 Myr prior to the observation epoch, setting the formation redshift of this galaxy at z~4.1. From the analysis of the line ratios and widths, and the observed flux at 24$mu$m, we confirm the presence of a luminous hidden active galactic nucleus (AGN), with bolometric luminosity of ~$10^{46}erg s^{-1}$. Potential contamination to the observed SED from the AGN continuum is constrained, placing a lower limit on the stellar mass of $2times10^{11} M_{odot}$. HST/WFC3 $H_{160}$ and ACS $I_{814}$ images are modeled, resulting in an effective radius of $r_{e}$~1 kpc in the $H_{160}$ band and a Sersic index n~4.4. This object may be a prototype of the progenitors of local most massive elliptical galaxies in the first 2 Gyr of cosmic history, having formed most of its stars at z>4 in a highly dissipative, intense, and short burst of star formation. C1-23152 is completing its transition to a post-starburst phase while hosting a powerful AGN, potentially responsible for the quenching of the star formation activity.
137 - Danilo Marchesini 2012
We present the rest-frame V-band luminosity function (LF) of galaxies at 0.4<z<4.0, measured from a near-infrared selected sample constructed from the NMBS, the FIRES, the FIREWORKS, and the ultra-deep NICMOS and WFC3 observations in the HDFN, HUDF, and GOODS-CDFS, all having high-quality optical to mid-infrared data. This unique sample combines data from surveys with a large range of depths and areas in a self-consistent way, allowing us to (1) minimize the uncertainties due to cosmic variance; and (2) simultaneously constrain the bright and faint ends with unprecedented accuracy over the targeted redshift range, probing the LF down to 0.1 L* at z~3.9. We find that (1) the faint end is fairly flat and with a constant slope from z=4, with alpha= -1.27 +/- 0.05; (2) the characteristic magnitude has dimmed by 1.3 mag from z~3.7 to z=0.1; (3) the characteristic density has increased by a factor of ~8 from z~3.7 to z=0.1, with 50% of this increase from z~4 to z~1.8; and (4) the luminosity density peaks at z~1-1.5, increasing by a factor of ~4 from z=4.0 to z~1-1.5, and subsequently decreasing by a factor of ~1.5 by z=0.1. We find no evidence for a steepening of the faint-end slope with redshift out to z=4, in contrast with previous observational claims and theoretical predictions. The constant faint-end slope suggests that the efficiency of stellar feedback may evolve with redshift. Alternative interpretations are discussed, such as different masses of the halos hosting faint galaxies at low and high redshifts and/or environmental effects.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا