ترغب بنشر مسار تعليمي؟ اضغط هنا

Control studies attempts to set the outcome of elections through the addition, deletion, or partition of voters or candidates. The set of benchmark control types was largely set in the seminal 1992 paper by Bartholdi, Tovey, and Trick that introduced control, and there now is a large literature studying how many of the benchmark types various election systems are vulnerable to, i.e., have polynomial-time attack algorithms for. However, although the longstanding benchmark models of addition and deletion model relatively well the real-world settings that inspire them, the longstanding benchmark models of partition model settings that are arguably quite distant from those they seek to capture. In this paper, we introduce--and for some important cases analyze the complexity of--new partition models that seek to better capture many real-world partition settings. In particular, in many partition settings one wants the two parts of the partition to be of (almost) equal size, or is partitioning into more than two parts, or has groups of actors who must be placed in the same part of the partition. Our hope is that having these new partition types will allow studies of control attacks to include such models that more realistically capture many settings.
Electoral control models ways of changing the outcome of an election via such actions as adding/deleting/partitioning either candidates or voters. To protect elections from such control attempts, computational complexity has been investigated and the corresponding NP-hardness results are termed resistance. It has been a long-running project of research in this area to classify the major voting systems in terms of their resistance properties. We show that fallback voting, an election system proposed by Brams and Sanver (2009) to combine Bucklin with approval voting, is resistant to each of the common types of control except to destructive control by either adding or deleting voters. Thus fallback voting displays the broadest control resistance currently known to hold among natural election systems with a polynomial-time winner problem. We also study the control complexity of Bucklin voting and show that it performs at least almost as well as fallback voting in terms of control resistance. As Bucklin voting is a special case of fallback voting, each resistance shown for Bucklin voting strengthens the corresponding resistance for fallback voting. Such worst-case complexity analysis is at best an indication of security against control attempts, rather than a proof. In practice, the difficulty of control will depend on the structure of typical instances. We investigate the parameterized control complexity of Bucklin and fallback voting, according to several parameters that are often likely to be small for typical instances. Our results, though still in the worst-case complexity model, can be interpreted as significant strengthenings of the resistance demonstrations based on NP-hardness.
We propose models for lobbying in a probabilistic environment, in which an actor (called The Lobby) seeks to influence voters preferences of voting for or against multiple issues when the voters preferences are represented in terms of probabilities. In particular, we provide two evaluation criteria and two bribery methods to formally describe these models, and we consider the resulting forms of lobbying with and without issue weighting. We provide a formal analysis for these problems of lobbying in a stochastic environment, and determine their classical and parameterized complexity depending on the given bribery/evaluation criteria and on various natural parameterizations. Specifically, we show that some of these problems can be solved in polynomial time, some are NP-complete but fixed-parameter tractable, and some are W[2]-complete. Finally, we provide approximability and inapproximability results for these problems and several variants.
192 - Gabor Erdelyi , Markus Nowak , 2009
We study sincere-strategy preference-based approval voting (SP-AV), a system proposed by Brams and Sanver [Electoral Studies, 25(2):287-305, 2006], and here adjusted so as to coerce admissibility of the votes (rather than excluding inadmissible votes a priori), with respect to procedural control. In such control scenarios, an external agent seeks to change the outcome of an election via actions such as adding/deleting/partitioning either candidates or voters. SP-AV combines the voters preference rankings with their approvals of candidates, where in elections with at least two candidates the voters approval strategies are adjusted--if needed--to approve of their most-preferred candidate and to disapprove of their least-preferred candidate. This rule coerces admissibility of the votes even in the presence of control actions, and hybridizes, in effect, approval with pluralitiy voting. We prove that this system is computationally resistant (i.e., the corresponding control problems are NP-hard) to 19 out of 22 types of constructive and destructive control. Thus, SP-AV has more resistances to control than is currently known for any other natural voting system with a polynomial-time winner problem. In particular, SP-AV is (after Copeland voting, see Faliszewski et al. [AAIM-2008, Springer LNCS 5034, pp. 165-176, 2008]) the second natural voting system with an easy winner-determination procedure that is known to have full resistance to constructive control, and unlike Copeland voting it in addition displays broad resistance to destructive control.
We prove that every distributional problem solvable in polynomial time on the average with respect to the uniform distribution has a frequently self-knowingly correct polynomial-time algorithm. We also study some features of probability weight of cor rectness with respect to generalizations of Procaccia and Rosenscheins junta distributions [PR07b].
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا