ترغب بنشر مسار تعليمي؟ اضغط هنا

We have performed low temperature scanning tunnelling spectroscopy (STS) measurements on graphene epitaxially grown on Ru(0001). An inelastic feature, related to the excitation of a vibrational breathing mode of the graphene lattice, was found at 360 meV. The change in the differential electrical conductance produced by this inelastic feature, which is associated with the electron-phonon interaction strength, varies spatially from one position to other of the graphene supercell. This inhomogeneity in the electronic properties of graphene on Ru(0001) results from local variations of the carbon-ruthenium interaction due to the lattice mismatch between the graphene and the Ru(0001) lattices.
An in situ tip preparation procedure compatible with ultra-low temperature and high magnetic field scanning tunneling microscopes is presented. This procedure does not require additional preparation techniques such as thermal annealing or ion milling . It relies on the local electric-field-induced deposition of material from the tip onto the studied surface. Subsequently, repeated indentations are performed onto the sputtered cluster to mechanically anneal the tip apex and thus to ensure the stability of the tip. The efficiency of this method is confirmed by comparing the topography and spectroscopy data acquired with either unprepared or in situ prepared tips on epitaxial graphene grown on Ru (0001). We demonstrate that the use of in situ prepared tips increases the stability of the scanning tunneling images and the reproducibility of the spectroscopic measurements.
We study pentanedithiol molecular junctions formed by means of the break-junction technique with a scanning tunneling microscope at low temperatures. Using inelastic electron tunneling spectroscopy and first-principles calculations, the response of t he junction to elastic deformation is examined. We show that this procedure makes a detailed characterization of the molecular junction possible. In particular, our results indicate that tunneling takes place through just a single molecule.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا