ترغب بنشر مسار تعليمي؟ اضغط هنا

The source counts of galaxies discovered at sub-millimetre and millimetre wavelengths provide important information on the evolution of infrared-bright galaxies. We combine the data from six blank-field surveys carried out at 1.1 mm with AzTEC, total ling 1.6 square degrees in area with root-mean-square depths ranging from 0.4 to 1.7 mJy, and derive the strongest constraints to date on the 1.1 mm source counts at flux densities S(1100) = 1-12 mJy. Using additional data from the AzTEC Cluster Environment Survey to extend the counts to S(1100) ~ 20 mJy, we see tentative evidence for an enhancement relative to the exponential drop in the counts at S(1100) ~ 13 mJy and a smooth connection to the bright source counts at >20 mJy measured by the South Pole Telescope; this excess may be due to strong lensing effects. We compare these counts to predictions from several semi-analytical and phenomenological models and find that for most the agreement is quite good at flux densities > 4 mJy; however, we find significant discrepancies (>3sigma) between the models and the observed 1.1 mm counts at lower flux densities, and none of them are consistent with the observed turnover in the Euclidean-normalised counts at S(1100) < 2 mJy. Our new results therefore may require modifications to existing evolutionary models for low luminosity galaxies. Alternatively, the discrepancy between the measured counts at the faint end and predictions from phenomenological models could arise from limited knowledge of the spectral energy distributions of faint galaxies in the local Universe.
We present a 0.72 sq. deg. contiguous 1.1mm survey in the central area of the COSMOS field carried out to a 1sigma ~ 1.26 mJy/beam depth with the AzTEC camera mounted on the 10m Atacama Submillimeter Telescope Experiment (ASTE). We have uncovered 189 candidate sources at a signal-to-noise ratio S/N >= 3.5, out of which 129, with S/N >= 4, can be considered to have little chance of being spurious (< 2 per cent). We present the number counts derived with this survey, which show a significant excess of sources when compared to the number counts derived from the ~0.5 sq. deg. area sampled at similar depths in the Scuba HAlf Degree Extragalactic Survey (SHADES, Austermann et al. 2010). They are, however, consistent with those derived from fields that were considered too small to characterize the overall blank-field population. We identify differences to be more significant in the S > 5 mJy regime, and demonstrate that these excesses in number counts are related to the areas where galaxies at redshifts z < 1.1 are more densely clustered. The positions of optical-IR galaxies in the redshift interval 0.6 < z < 0.75 are the ones that show the strongest correlation with the positions of the 1.1mm bright population (S > 5 mJy), a result which does not depend exclusively on the presence of rich clusters within the survey sampled area. The most likely explanation for the observed excess in number counts at 1.1mm is galaxy-galaxy and galaxy-group lensing at moderate amplification levels, that increases in amplitude as one samples larger and larger flux densities. This effect should also be detectable in other high redshift populations.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا