ترغب بنشر مسار تعليمي؟ اضغط هنا

We study the substructure statistics of a representative sample of galaxy clusters by means of two currently popular substructure characterisation methods, power ratios and centroid shifts. We use the 31 clusters from the REXCESS sample, compiled fro m the southern ROSAT All-Sky cluster survey REFLEX with a morphologically unbiased selection in X-ray luminosity and redshift, all of which have been reobserved with XMM-Newton. We investigate the uncertainties of the substructure parameters and examine the dependence of the results on projection effects, finding that the uncertainties of the parameters can be quite substantial. Thus while the quantification of the dynamical state of individual clusters with these parameters should be treated with extreme caution, these substructure measures provide powerful statistical tools to characterise trends of properties in large cluster samples. The centre shift parameter, w, is found to be more sensitive in general. For the REXCESS sample neither the occurence of substructure nor the presence of cool cores depends on cluster mass. There is a significant anti-correlation between the existence of substantial substructure and cool cores. The simulated clusters show on average larger substructure parameters than the observed clusters, a trend that is traced to the fact that cool regions are more pronounced in the simulated clusters, leading to stronger substructure measures in merging clusters and clusters with offset cores. Moreover, the frequency of cool regions is higher in the simulations than in the observations, implying that the description of the physical processes shaping cluster formation in the simulations requires further improvement.
114 - G.W. Pratt , M. Arnaud 2009
(Abridged) We examine the radial entropy distribution and its scaling using 31 nearby galaxy clusters from the Representative XMM-Newton Cluster Structure Survey (REXCESS). The entropy profiles are robustly measured at least out to R_1000 in all syst ems and out to R_500 in 13 systems. Compared to theoretical expectations, the observed distributions show a radial and mass-dependent excess entropy that is greater and extends to larger radii in lower mass systems. At R_500, the mass dependence and entropy excess are both negligible within the uncertainties. Mirroring this behaviour, the scaling of gas entropy is shallower than self-similar in the inner regions, but steepens with radius, becoming consistent with self-similar at R_500. The dispersion in scaled entropy in the inner regions is linked to the presence of cool cores and dynamical activity; at larger radii the dispersion decreases by a factor of two and the dichotomy between subsamples disappears. Parameterising the profiles with a power law plus constant model, there are two peaks in central entropy K_0; however, we cannot distinguish between a bimodal or a left-skewed distribution. The outer slopes are correlated with system temperature; their distribution is unimodal with a median value of 0.98. Renormalising the dimensionless entropy profiles by the gas mass fraction profile f_gas(< R), leads to a remarkable reduction in the scatter, implying that gas mass fraction variations with radius and mass are the cause of the observed entropy properties. We discuss a tentative scenario to explain the behaviour of the entropy and gas mass fraction in the REXCESS sample, in which extra heating and merger mixing maintains an elevated central entropy level in the majority of the population, and a smaller fraction of systems develops a cool core.
(Abridged) We examine the X-ray luminosity scaling relations of 31 nearby galaxy clusters from the Representative XMM-Newton Cluster Structure Survey (REXCESS). The objects are selected in X-ray luminosity only, optimally sampling the cluster luminos ity function; temperatures range from 2 to 9 keV and there is no bias toward any particular morphological type. Pertinent values are extracted in an aperture corresponding to R_500, estimated using the tight correlation between Y_X and total mass. The data exhibit power law relations between bolometric X-ray luminosity and temperature, Y_X and total mass, all with slopes that are significantly steeper than self-similar expectations. We examine the causes for the steepening, finding that the primary driver appears to be a systematic variation of the gas content with mass. Scatter about the relations is dominated in all cases by the presence of cool cores. The natural logarithmic scatter about the raw X-ray luminosity-temperature relation is about 70%, and about the X-ray luminosity-Y_X relation it is 40%. Cool core and morphologically disturbed systems occupy distinct regions in the residual space with respect to the best fitting mean relation, the former lying systematically to the high luminosity side, the latter to the low luminosity side. Exclusion of the central regions serves to reduce the scatter by more than 50%. Using Y_X as a mass proxy, we derive a Malmquist bias corrected luminosity-mass relation and compare with previous determinations. Our results indicate that luminosity can be a reliable mass proxy with controllable scatter, which has important implications for upcoming all-sky cluster surveys, such as those to be undertaken with Planck and eROSITA, and ultimately for the use of clusters for cosmological purposes.
We present a study of the structural and scaling properties of the gas distributions in the intracluster medium (ICM) of 31 nearby (z < 0.2) clusters observed with XMM-Newton, which together comprise the Representative XMM-Newton Cluster Structure Su rvey (REXCESS). In contrast to previous studies, this sample is unbiased with respect to cluster dynamical state, and it fully samples the cluster X-ray luminosity function. The clusters cover a temperature range of 2.0 -- 8.5 keV and possess a variety of morphologies. The sampling strategy allows us to compare clusters with a wide range of central cooling times on an equal footing. We present non-parametric gas-density profiles out to distances ranging between 0.8 R_500 and 1.5 R_500. The central gas densities differ greatly from system to system, with no clear correlation with system temperature. At intermediate radii the scaled density profiles show much less scatter, with a clear dependence on system temperature, consistent with the presence of an entropy excess as suggested in previous literature. However, at large scaled radii this dependence becomes weaker: clusters with kT > 3 keV scale self-similarly, with no temperature dependence of gas-density normalisation. We find some evidence of a correlation between dynamical state and outer gas density slope, and between dynamical state and both central gas normalisation and cooling time. We find no evidence of a significant bimodality in the distributions of central density, density gradient, or cooling time. Finally, we present the gas mass-temperature relation for the REXCESS sample, which is consistent with the expectation of self-similar scaling modified by the presence of an entropy excess in the inner regions of the cluster, and has a logarithmic intrinsic scatter of ~10%.
The quantity Y_ X, the product of the X-ray temperature T_ X and gas mass M_ g, has recently been proposed as a robust low-scatter mass indicator for galaxy clusters. Using precise measurements from XMM-Newton data of a sample of 10 relaxed nearby cl usters, spanning a Y_ X range of 10^13 -10^15 M_sun keV, we investigate the M_500-Y_ X relation. The M_500 - Y_ X data exhibit a power law relation with slope alpha=0.548 pm 0.027, close to the self-similar value (3/5) and independent of the mass range considered. However, the normalisation is sim 20% below the prediction from numerical simulations including cooling and galaxy feedback. We discuss two effects that could contribute to the normalisation offset: an underestimate of the true mass due to the HE assumption used in X-ray mass estimates, and an underestimate of the hot gas mass fraction in the simulations. A comparison of the functional form and scatter of the relations between various observables and the mass suggest that Y_ X may indeed be a better mass proxy than T_ X or M_g,500.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا