ترغب بنشر مسار تعليمي؟ اضغط هنا

150 - Ying Zu , G.T. Zhu (1 2008
Galaxy formation inside dark matter halos, as well as the halo formation itself, can be affected by large-scale environments. Evaluating the imprints of environmental effects on galaxy clustering is crucial for precise cosmological constraints with d ata from galaxy redshift surveys. We investigate such an environmental impact on both real-space and redshift-space galaxy clustering statistics using a semi-analytic model derived from the Millennium Simulation. We compare clustering statistics from original SAM galaxy samples and shuffled ones with environmental influence on galaxy properties eliminated. Among the luminosity-threshold samples examined, the one with the lowest threshold luminosity (~0.2L_*) is affected by environmental effects the most, which has a ~10% decrease in the real-space two-point correlation function (2PCF) after shuffling. By decomposing the 2PCF into five different components based on the source of pairs, we show that the change in the 2PCF can be explained by the age and richness dependence of halo clustering. The 2PCFs in redshift space are found to change in a similar manner after shuffling. If the environmental effects are neglected, halo occupation distribution modeling of the real-space and redshift-space clustering may have a less than 6.5% systematic uncertainty in constraining beta from the most affected SAM sample and have substantially smaller uncertainties from the other, more luminous samples. We argue that the effect could be even smaller in reality. In the Appendix, we present a method to decompose the 2PCF, which can be applied to measure the two-point auto-correlation functions of galaxy sub-samples in a volume-limited galaxy sample and their two-point cross-correlation functions in a single run utilizing only one random catalog.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا