ترغب بنشر مسار تعليمي؟ اضغط هنا

Context. The observation of carbon-rich disks have motivated several studies questioning the influence of the C/O ratio on their gas phase composition in order to establish the connection between the metallicity of hot-Jupiters and that of their pare nt stars. Aims. We to propose a method that allows the characterization of the adopted C/O ratio in protoplanetary disks independently from the determination of the host star composition. Titanium and vanadium chemistries are investigated because they are strong optical absorbers and also because their oxides are known to be sensitive to the C/O ratio in some exoplanet atmospheres. Methods. We use a commercial package based on the Gibbs energy minimization technique to compute the titanium and vanadium equilibrium chemistries in protoplanetary disks for C/O ratios ranging from 0.05 to 10. Our calculations are performed for pressures ranging from 1e-6 to 1e-2 bar, and for temperatures ranging from 50 to 2000 K. Results. We find that the vanadium nitride/vanadium oxide and titanium hydride/titanium oxide gas phase ratios strongly depend on the C/O ratio in the hot parts of disks (T > 1000 K). Our calculations suggest that, in these regions, these ratios can be used as tracers of the C/O value in protoplanetary disks.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا