ترغب بنشر مسار تعليمي؟ اضغط هنا

We present a study of 33 {it Kepler} planet-candidate host stars for which asteroseismic observations have sufficiently high signal-to-noise ratio to allow extraction of individual pulsation frequencies. We implement a new Bayesian scheme that is fle xible in its input to process individual oscillation frequencies, combinations of them, and average asteroseismic parameters, and derive robust fundamental properties for these targets. Applying this scheme to grids of evolutionary models yields stellar properties with median statistical uncertainties of 1.2% (radius), 1.7% (density), 3.3% (mass), 4.4% (distance), and 14% (age), making this the exoplanet host-star sample with the most precise and uniformly determined fundamental parameters to date. We assess the systematics from changes in the solar abundances and mixing-length parameter, showing that they are smaller than the statistical errors. We also determine the stellar properties with three other fitting algorithms and explore the systematics arising from using different evolution and pulsation codes, resulting in 1% in density and radius, and 2% and 7% in mass and age, respectively. We confirm previous findings of the initial helium abundance being a source of systematics comparable to our statistical uncertainties, and discuss future prospects for constraining this parameter by combining asteroseismology and data from space missions. Finally we compare our derived properties with those obtained using the global average asteroseismic observables along with effective temperature and metallicity, finding an excellent level of agreement. Owing to selection effects, our results show that the majority of the high signal-to-noise ratio asteroseismic {it Kepler} host stars are older than the Sun.
In the age of Kepler and Corot, extended observations have provided estimates of stellar pulsation frequencies that have achieved new levels of precision, regularly exceeding fractional levels of a few parts in $10^{4}$. These high levels of precisio n now in principle exceed the point where one can ignore the Doppler shift of pulsation frequencies caused by the motion of a star relative to the observer. We present a correction for these Doppler shifts and use previously published pulsation frequencies to demonstrate the significance of the effect. We suggest that reported pulsation frequencies should be routinely corrected for stellar line-of-sight velocity Doppler shifts, or if a line-of-sight velocity estimate is not available, the frame of reference in which the frequencies are reported should be clearly stated.
Sun-as-a-star observations are very important for the study of the conditions within the Sun and in particular for the deep interior where higher degree modes do not penetrate. They are also of significance in this era of dramatic advances in stellar asteroseismology as they are comparable to those measured in other stars by asteroseismic missions such as CoRoT, Kepler, and MOST. More than 17 years of continuous measurements of SoHO and more than 30 years of BiSON observations provide very long data sets of uninterrupted helioseismic observations. In this work, we discuss the present status of all these facilities that continue to provide state- of-the-art measurements and invaluable data to improve our knowledge of the deepest layers of the Sun and its structural changes during the activity cycle.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا