ترغب بنشر مسار تعليمي؟ اضغط هنا

We report the observation of Lifetime Enhanced Transport (LET) based on perpendicular valleys in silicon by transport spectroscopy measurements of a two-electron system in a silicon transistor. The LET is manifested as a peculiar current step in the stability diagram due to a forbidden transition between an excited state and any of the lower energy states due perpendicular valley (and spin) configurations, offering an additional current path. By employing a detailed temperature dependence study in combination with a rate equation model, we estimate the lifetime of this particular state to exceed 48 ns. The two-electron spin-valley configurations of all relevant confined quantum states in our device were obtained by a large-scale atomistic tight-binding simulation. The LET acts as a signature of the complicated valley physics in silicon; a feature that becomes increasingly important in silicon quantum devices.
Quantum coherence is of crucial importance for the applicability of donor based quantum computing. In this Letter we describe the observation of the interference of conduction paths induced by two donors in a nano-MOSFET resulting in a Fano resonance . This demonstrates the coherent exchange of electrons between two donors. In addition, the phase difference between the two conduction paths can be tuned by means of a magnetic field, in full analogy to the Aharonov-Bohm effect.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا