ترغب بنشر مسار تعليمي؟ اضغط هنا

We present a new method to evaluate with high precision the isospin breaking effects due to the mass difference between the up and down quarks using lattice QCD. Our proposal is applicable in principle to any hadronic observable which can be computed on the lattice. It is based on the expansion of the path-integral in powers of the small parameter $m_d - m_u$. In this talk we discuss how to apply this method to compute the leading isospin breaking effects for several physical quantities of interest: the kaon masses, the kaon decay constants and the neutron-proton mass splitting.
We present a new method to evaluate with high precision isospin breaking effects due to the small mass difference between the up and down quarks using lattice QCD. Our proposal is applicable in principle to any hadronic observable which can be comput ed on the lattice. It is based on the expansion of the path-integral in powers of the small parameter md-mu. In this paper, we apply this method to compute the leading isospin breaking effects for several physical quantities of interest: the kaon meson masses, the kaon decay constant, the form factors of semileptonic Kl3 decays and the neutron-proton mass splitting.
We calculate, in the continuum limit of quenched lattice QCD, the form factor that enters the decay rate of the semileptonic decay B --> D* l nu. By using the step scaling method (SSM), previously introduced to handle two scale problems in lattice QC D, and by adopting flavor twisted boundary conditions we extract F(w) at finite momentum transfer and at the physical values of the heavy quark masses. Our results can be used in order to extract the CKM matrix element Vcb by the experimental decay rate without model dependent extrapolations. The value of Vcb agrees with the one obtained from the B --> D l nu channel and makes us confident that the quenched approximation well applies to these transitions.
We calculate, in the continuum limit of quenched lattice QCD, the matrix elements of the heavy-heavy vector current between heavy-light pseudoscalar meson states. We present the form factors for different values of the initial and final meson masses at finite momentum transfer. In particular, we calculate the non-perturbative correction to the differential decay rate of the process B --> D l nu including the case of a non-vanishing lepton mass.
We calculate, in the continuum limit of quenched lattice QCD, the form factor that enters in the decay rate of the semileptonic decay B --> D l nu. Making use of the step scaling method (SSM), previously introduced to handle two scale problems in lat tice QCD, and of flavour twisted boundary conditions we extract G(w) at finite momentum transfer and at the physical values of the heavy quark masses. Our results can be used in order to extract the CKM matrix element Vcb by the experimental decay rate without model dependent extrapolations.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا