ترغب بنشر مسار تعليمي؟ اضغط هنا

Constraining the spatial and thermal structure of the gaseous component of circumstellar disks is crucial to understand star and planet formation. Models predict that the [Ne II] line at 12.81 {mu}m detected in young stellar objects with Spitzer trac es disk gas and its response to high energy radiation, but such [Ne II] emission may also originate in shocks within powerful outflows. To distinguish between these potential origins for mid-infrared [Ne II] emission and to constrain disk models, we observed 32 young stellar objects using the high resolution (R~30000) mid-infrared spectrograph VISIR at the VLT. We detected the 12.81 {mu}m [Ne II] line in 12 objects, tripling the number of detections of this line in young stellar objects with high spatial and spectral resolution spectrographs. We obtain the following main results: a) In Class I objects the [Ne II] emission observed from Spitzer is mainly due to gas at a distance of more than 20-40 AU from the star, where neon is, most likely, ionized by shocks due to protostellar outflows. b) In transition and pre-transition disks, most of the emission is confined to the inner disk, within 20-40 AU from the central star. c) Detailed analysis of line profiles indicates that, in transition and pre-transition disks, the line is slightly blue-shifted (2-12 km s{^-1}) with respect to the stellar velocity, and the line width is directly correlated with the disk inclination, as expected if the emission is due to a disk wind. d) Models of EUV/X-ray irradiated disks reproduce well the observed relation between the line width and the disk inclination, but underestimate the blue-shift of the line.
Aims. We performed a detailed membership selection and studied the accretion properties of low-mass stars in the two apparently very similar young (1-10 Myr) clusters sigma Ori and lambda Ori. Methods. We observed 98 and 49 low-mass (0.2-1.0 M_sun) stars in sigma Ori and lambda Ori respectively, using the multi-object optical spectrograph FLAMES at the VLT, with the high-resolution (R=17,000) HR15N grating (6470-6790 AA). We used radial velocities, Li and Halpha to establish cluster membership and Halpha and other optical emission lines to analyze the accretion properties of members. Results. We identified 65 and 45 members of the sigma Ori and lambda Ori clusters, respectively and discovered 16 new candidate binary systems. We also measured rotational broadening for 20 stars and estimated the mass accretion rates in 25 stars of the sigma Ori cluster, finding values between 10^-11 and 10^-7.7 M_sun yr^-1 and in 4 stars of the lambda Ori cluster, finding values between 10^-11 and 10^-10.1 M_sun yr-1. Comparing our results with the infrared photometry obtained by the Spitzer satellite, we find that the fraction of stars with disks and the fraction of active disks is larger in the sigma Ori cluster (52+-9% and 78+-16%) than in lambda Ori (28+-8% and 40+-20%) Conclusions. The different disk and accretion properties of the two clusters could be due either to the effect of the high-mass stars and the supernova explosion in the lambda Ori cluster or to different ages of the cluster populations. Further observations are required to draw a definitive conclusion.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا