ترغب بنشر مسار تعليمي؟ اضغط هنا

Although quantum mechanics (QM) and quantum field theory (QFT) are highly successful, the seemingly simplest state -- vacuum -- remains mysterious. While the LHC experiments are expected to clarify basic questions on the structure of QFT vacuum, much can still be done at lower energies as well. For instance, experiments like PVLAS try to reach extremely high sensitivities, in their attempt to observe the effects of the interaction of visible or near-visible photons with intense magnetic fields -- a process which becomes possible in quantum electrodynamics (QED) thanks to the vacuum fluctuations of the electronic field, and which is akin to photon-photon scattering. PVLAS is now close to data-taking and if it reaches the required sensitivity, it could provide important information on QED vacuum. PVLAS and other similar experiments face great challenges as they try to measure an extremely minute effect. However, raising the photon energy greatly increases the photon-photon cross-section, and gamma rays could help extract much more information from the observed light-light scattering. Here we discuss an experimental design to measure photon-photon scattering close to the peak of the photon-photon cross-section, that could fit in the proposed construction of an FEL facility at the Cabibbo Lab near Frascati (Rome, Italy).
IIn 2006 the PVLAS collaboration reported the observation of an optical rotation generated in vacuum by a magnetic field. To further check against possible instrumental artifacts several upgrades to the PVLAS apparatus have been made during the last year. Two data taking runs, at the wavelength of 1064 nm, have been performed in the new configuration with magnetic field strengths of 2.3 T and 5 T. The 2.3 T field value was chosen in order to avoid stray fields. The new observations do not show the presence of a rotation signal down to the levels of $1.2cdot 10^{-8}$ rad at 5 T and $1.0cdot 10^{-8}$ rad at 2.3 T (at 95% c.l.) with 45000 passes in the magnetic field zone. In the same conditions no ellipticity signal was detected down to $1.4cdot 10^{-8}$ at 2.3 T (at 95% c.l.), whereas at 5 T a signal is still present. The physical nature of this ellipticity as due to an effect depending on $B^2$ can be excluded by the measurement at 2.3 T. These new results completely exclude the previously published magnetically induced vacuum dichroism results, indicating that they were instrumental artifacts. These new results therefore also exclude the particle interpretation of the previous PVLAS results as due to a spin zero boson. The background ellipticity at 2.3 T can be used to determine a new limit on the total photon-photon scattering cross section of $sigma_{gammagamma} < 4.5 cdot10^{-34}$ barn at 95% c.l..
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا