ترغب بنشر مسار تعليمي؟ اضغط هنا

The ionising continuum from active galactic nuclei (AGN) is fundamental for interpreting their broad emission lines and understanding their impact on the surrounding gas. Furthermore, it provides hints on how matter accretes onto supermassive black h oles. Using HSTs Wide Field Camera 3 we have constructed the first stacked ultraviolet (rest-frame wavelengths 600-2500AA) spectrum of 53 luminous quasars at z=2.4, with a state-of-the-art correction for the intervening Lyman forest and Lyman continuum absorption. The continuum slope ($f_ u propto u^{alpha_ u}$) of the full sample shows a break at ~912AA with spectral index $alpha_ u=-0.61pm0.01$ at $lambda>912$AA and a softening at shorter wavelengths ($alpha_ u=-1.70 pm 0.61$ at $lambdaleq 912$AA). Our analysis proves that a proper intergalactic medium absorption correction is required to establish the intrinsic continuum emission of quasars. We interpret our average ultraviolet spectrum in the context of photoionisation, accretion disk models, and quasar contribution to the ultraviolet background. We find that observed broad line ratios are consistent with those predicted assuming an ionising slope of $alpha_mathrm{ion}=$-2.0, similar to the observed ionising spectrum in the same wavelength range. The continuum break and softening are consistent with accretion disk plus X-ray corona models when black hole spin is taken into account. Our spectral energy distribution yields a 30% increase to previous estimates of the specific quasar emissivity, such that quasars may contribute significantly to the total specific Lyman limit emissivity estimated from the Ly$alpha$ forest at z<3.2.
We present the results of the Quasars near Quasars (QNQ) survey, a CCD-based slitless spectroscopic survey for faint V<22 quasars at 1.7<z<3.6 on 18 26.2x33.5 fields centred on bright quasars at 2.76<z<4.69. In total 169 quasar candidates with emissi on lines were selected from the extracted flux-calibrated spectra on the basis of well-defined automatic selection criteria followed by visual inspection and verification. With follow-up spectroscopy of 81 candidates that were likely to reside at z>1.7 we were able to confirm 80 new quasars at 0.580<z<3.586 on 16 of our fields. 64 of the newly discovered quasars are located at z>1.7. The overall high success rate implies that most of the remaining 88 candidates are quasars as well, although the majority of them likely resides at z<1.7 on the basis of the observed line shapes and strengths. Due to the insufficient depth of the input source catalogues needed for extraction of the slitless spectra our survey is not well defined in terms of limiting magnitude for faint 2.5<z<3.6 quasars whose Lyman alpha emission is detectable well beyond V=22, albeit at a continuum S/N<1. While not useful for characterising the evolving space density of quasars, our sample provides many new closely spaced quasar sightlines around intensely studied quasars for further investigations on the three-dimensional distribution of the intergalactic medium.
122 - G. Worseck 2007
We report the discovery of 14 quasars in the vicinity of HE2347-4342, one of the two quasars whose intergalactic HeII forest has been resolved with FUSE. By analysing the HI and the HeII opacity variations separately, no transverse proximity effect i s detected near three foreground quasars of HE2347-4342: QSOJ23503-4328 (z=2.282, $vartheta=3.59$ arcmin), QSOJ23500-4319 (z=2.302, $vartheta=8.77$ arcmin) and QSOJ23495-4338 (z=2.690, $vartheta=16.28$ arcmin). This is primarily due to line contamination and overdensities probably created by large-scale structure. By comparing the HI absorption and the corresponding HeII absorption, we estimated the fluctuating spectral shape of the extragalactic UV radiation field along this line of sight. We find that the UV spectral shape near HE2347-4342 and in the projected vicinity of the three foreground quasars is statistically harder than expected from UV background models dominated by quasars. In addition, we find three highly ionised metal line systems near the quasars. However, they do not yield further constraints on the shape of the ionising field. We conclude that the foreground quasars show a transverse proximity effect that is detectable as a local hardening of the UV radiation field, although the evidence is strongest for QSOJ23495-4338. Thus, the relative spectral hardness traces the proximity effect also in overdense regions prohibiting the traditional detection in the HI forest. Furthermore, we emphasise that softening of quasar radiation by radiative transfer in the intergalactic medium is important to understand the observed spectral shape variations. From the transverse proximity effect of QSOJ23495-4338 we obtain a lower limit on the quasar lifetime of ~25 Myr.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا