ترغب بنشر مسار تعليمي؟ اضغط هنا

We present the currently most precise W boson mass (M_W) prediction in the Minimal Supersymmetric Standard Model (MSSM) and discuss how it is affected by recent results from the LHC. The evaluation includes the full one-loop result and all known high er order corrections of SM and SUSY type. We show the MSSM prediction in the M_W-m_t plane, taking into account constraints from Higgs and SUSY searches. We point out that even if stops and sbottoms are heavy, relatively large SUSY contributions to M_W are possible if either charginos, neutralinos or sleptons are light. In particular we analyze the effect on the M_W prediction of the Higgs signal at about 125.6 GeV, which within the MSSM can in principle be interpreted as the light or the heavy CP-even Higgs boson. For both interpretations the predicted MSSM region for M_W is in good agreement with the experimental measurement. We furthermore discuss the impact of possible future LHC results in the stop sector on the M_W prediction, considering both the cases of improved limits and of the detection of a scalar top quark.
We review the analysis of the 5 sigma discovery contours for the charged MSSM Higgs boson at the CMS experiment with 30 fb^-1 for the two cases M_H+ < m_t and M_H+ > m_t. Latest results for the CMS experimental sensitivities based on full simulation studies are combined with state-of-the-art theoretical predictions of MSSM Higgs-boson production and decay properties. Special focus is put on the SUSY parameter dependence of the 5 sigma contours. The variation of mu can shift the prospective discovery reach in tan_beta by up to Delta tan_beta = 40. We furthermore discuss various theory uncertainties on the signal cross section and branching ratio calculations. In order to arrive at a reliable interpretation of a signal of the charged MSSM Higgs boson at the LHC a strong reduction in the relevant theory uncertainties will be necessary.
We review the 5 sigma discovery contours for the charged MSSM Higgs boson at the CMS experiment with 30/fb for the two cases M_H+ < m_t and M_H+ > m_t. In order to analyze the search reach we combine the latest results for the CMS experimental sensit ivities based on full simulation studies with state-of-the-art theoretical predictions of MSSM Higgs-boson production and decay properties. Special emphasis is put on the SUSY parameter dependence of the 5 sigma contours. The variation of $mu$ can shift the prospective discovery reach in tan_beta by up to Delta tan_beta = 40.
186 - K.E. Williams , G. Weiglein 2008
The analysis of the Higgs search results at LEP showed that a part of the MSSM parameter space with non-zero complex phases could not be excluded, where the lightest neutral Higgs boson, h_1, has a mass of only about 45 GeV and the second lightest ne utral Higgs boson, h_2, has a sizable branching fraction into a pair of h_1 states. Full one-loop results for the Higgs cascade decay h_2 --> h_1 h_1 are presented and combined with two-loop Higgs propagator corrections taken from the program FeynHiggs. Using the improved theoretical prediction to analyse the limits on topological cross sections obtained at LEP, the existence of an unexcluded region at low Higgs mass is confirmed. The effect of the genuine vertex corrections on the size and shape of this region is discussed.
Complete one-loop results for the decay widths of neutral Higgs bosons (h_a) into lighter neutral Higgs bosons (h_b, h_c) are presented for the MSSM with complex parameters. The results are obtained in the Feynman-diagrammatic approach, taking into a ccount the full dependence on the spectrum of supersymmetric particles and all complex phases of the supersymmetric parameters. The genuine triple-Higgs vertex contributions are supplemented with two-loop propagator-type corrections, yielding the currently most precise prediction for this class of processes. The genuine vertex corrections turn out to be very important, yielding a large increase of the decay width compared to a prediction based on the tree-level vertex. The new results are used to analyse the impact of the experimental limits from the LEP Higgs searches on the parameter space with a very light MSSM Higgs boson. It is found that a significant part of the parameter space of the CPX benchmark scenario exists where channels involving the decay h_2 --> h_1 h_1 have the highest search sensitivity, and the existence of an unexcluded region with M_{h_1} approx 45 GeV is confirmed.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا