ترغب بنشر مسار تعليمي؟ اضغط هنا

114 - G. Vannoni 2009
Clusters of galaxies are believed to be capable to accelerate protons at accretion shocks to energies exceeding 10^18 eV. At these energies, the losses caused by interactions of cosmic rays with photons of the Cosmic Microwave Background Radiation (C MBR) become effective and determine the maximum energy of protons and the shape of the energy spectrum in the cutoff region. The aim of this work is the study of the formation of the energy spectrum of accelerated protons at accretion shocks of galaxy clusters and of the characteristics of their broad band emission. The proton energy distribution is calculated self-consistently via a time-dependent numerical treatment of the shock acceleration process which takes into account the proton energy losses due to interactions with the CMBR. We calculate the energy distribution of accelerated protons, as well as the flux of broad-band emission produced by secondary electrons and positrons via synchrotron and inverse Compton scattering processes. We find that the downstream and upstream regions contribute almost at the same level to the emission. For the typical parameters characterising galaxy clusters, the synchrotron and IC peaks in the spectral energy distributions appear at comparable flux levels. For an efficient acceleration, the expected emission components in the X-ray and gamma-ray band are close to the detection threshold of current generation instruments, and will be possibly detected with the future generation of detectors.
Radio, X-ray, and gamma-ray observations provide us with strong evidence of particle acceleration to multi-TeV energies in various astrophysical sources. Diffusive shock acceleration is one of the most successful models explaining the presence of suc h high-energy particles. We discuss the impact of inverse Compton losses on the shock acceleration of electrons that takes place in radiation dominated environments, i.e. in regions where the radiation energy density exceeds that of the magnetic field. We perform a numerical calculation, including an energy-loss term in the transport equation of accelerated particles. We discuss the implications of this effect on the hard X-ray synchrotron and gamma-ray inverse Compton radiation, produced by shock-accelerated electrons in young supernova remnants in the presence of large radiation fields (e.g. in the Galactic centre). We also discuss possible implications of our results for clusters of galaxies and gamma-ray binaries. We demonstrate that the inverse Compton losses of electrons, in the Klein-Nishina regime, lead to spectra of ultra-relativistic electrons that may significantly differ from classical diffusive shock acceleration solution. The most prominent feature is the appearance of a pile-up in the spectrum around the cut-off energy.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا