ترغب بنشر مسار تعليمي؟ اضغط هنا

We present thermoelectric power (TEP) studies under pressure and high magnetic field in the antiferromagnet CeRh2Si2 at low temperature. Under magnetic field, large quantum oscillations are observed in the TEP, S(H), in the antiferromagnetic phase. T hey suddenly disappear when entering in the polarized paramagnetic (PPM) state at Hc pointing out an important reconstruction of the Fermi surface (FS). Under pressure, S/T increases strongly of at low temperature near the critical pressure Pc, where the AF order is suppressed, implying the interplay of a FS change and low energy excitations driven by spin and valence fluctuations. The difference between the TEP signal in the PPM state above Hc and in the paramagnetic state (PM) above Pc can be explained by different FS. Band structure calculations at P = 0 stress that in the AF phase the 4f contribution at the Fermi level (EF) is weak while it is the main contribution in the PM domain. By analogy to previous work on CeRu2Si2, in the PPM phase of CeRh2Si2 the 4f contribution at EF will drop.
152 - C. Capan , G. Seyfarth , D. Hurt 2009
We have investigated the effect of Yb substitution on the Pauli limited, heavy fermion superconductor, CeCoIn$_5$. Yb acts as a non-magnetic divalent substituent for Ce throughout the entire doping range, equivalent to hole doping on the rare earth s ite. We found that the upper critical field in (Ce,Yb)CoIn$_5$ is Pauli limited, yet the reduced (H,T) phase diagram is insensitive to disorder, as expected in the purely orbitally limited case. We use the Pauli limiting field, the superconducting condensation energy and the electronic specific heat coefficient to determine the Wilson ratio ($R_{W}$), the ratio of the specific heat coefficient to the Pauli susceptibility in CeCoIn$_5$. The method is applicable to any Pauli limited superconductor in the clean limit.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا