ترغب بنشر مسار تعليمي؟ اضغط هنا

Motivated by recent cosmological observations of a possibly unsuppressed primordial tensor component $r$ of inflationary perturbations, we reanalyse in detail the 5D conformal SUGRA originated natural inflation model of Ref. [1]. The model is a super symmetric variant of 5D extra natural inflation, also based on a shift symmetry, and leads to the potential of natural inflation. Coupling the bulk fields generating the inflaton potential via a gauge coupling to the inflaton with brane SM states we necessarily obtain a very slow gauge inflaton decay rate and a very low reheating temperature $T_rstackrel{<}{_sim }{cal O}(100)$~GeV. Analysis of the required number of e-foldings (from the CMB observations) leads to values of $n_s$ in the lower range of present Planck 2015 results. Some related theoretical issues of the construction, along with phenomenological and cosmological implications, are also discussed.
We consider Yukawa theory in which the fermion mass is induced by a Higgs like scalar. In our model the fermion mass exhibits a temporal dependence, which naturally occurs in the early Universe setting. Assuming that the complex fermion mass changes as a tanh-kink, we construct an exact, helicity conserving, CP-violating solution for the positive and negative frequency fermionic mode functions, which is valid both in the case of weak and strong CP violation. Using this solution we then study the fermionic currents both in the initial vacuum and finite density/temperature setting. Our result shows that, due to a potentially large state squeezing, fermionic currents can exhibit a large oscillatory magnification. Having in mind applications to electroweak baryogenesis, we then compare our exact results with those obtained in a gradient approximation. Even though the gradient approximation does not capture the oscillatory effects of squeezing, it describes quite well the averaged current, obtained by performing a mode sum. Our main conclusion is: while the agreement with the semiclassical force is quite good in the thick wall regime, the difference is sufficiently significant to motivate a more detailed quantitative study of baryogenesis sources in the thin wall regime in more realistic settings.
We consider the entropy and decoherence in fermionic quantum systems. By making a Gaussian Ansatz for the density operator of a collection of fermions we study statistical 2-point correlators and express the entropy of a system fermion in terms of th ese correlators. In a simple case when a set of N thermalised environmental fermionic oscillators interacts bi-linearly with the system fermion we can study its time dependent entropy, which also represents a quantitative measure for decoherence. We then consider a relativistic fermionic quantum field theory and take a mass mixing term as a simple model for the Yukawa interaction. It turns out that even in this Gaussian approximation, the fermionic system decoheres quite effectively, such that in a large coupling and high temperature regime the system field approaches the temperature of the environmental fields.
Experiments with cold and ultracold neutrons have reached a level of precision such that problems far beyond the scale of the present Standard Model of particle physics become accessible to experimental investigation. Due to the close links between p article physics and cosmology, these studies also permit a deep look into the very first instances of our universe. First addressed in this article, both in theory and experiment, is the problem of baryogenesis ... The question how baryogenesis could have happened is open to experimental tests, and it turns out that this problem can be curbed by the very stringent limits on an electric dipole moment of the neutron, a quantity that also has deep implications for particle physics. Then we discuss the recent spectacular observation of neutron quantization in the earths gravitational field and of resonance transitions between such gravitational energy states. These measurements, together with new evaluations of neutron scattering data, set new constraints on deviations from Newtons gravitational law at the picometer scale. Such deviations are predicted in modern theories with extra-dimensions that propose unification of the Planck scale with the scale of the Standard Model ... Another main topic is the weak-interaction parameters in various fields of physics and astrophysics that must all be derived from measured neutron decay data. Up to now, about 10 different neutron decay observables have been measured, much more than needed in the electroweak Standard Model. This allows various precise tests for new physics beyond the Standard Model, competing with or surpassing similar tests at high-energy. The review ends with a discussion of neutron and nuclear data required in the synthesis of the elements during the first three minutes and later on in stellar nucleosynthesis.
We study the decoherence of a renormalised quantum field theoretical system. We consider our novel correlator approach to decoherence where entropy is generated by neglecting observationally inaccessible correlators. Using out-of-equilibrium field th eory techniques at finite temperatures, we show that the Gaussian von Neumann entropy for a pure quantum state asymptotes to the interacting thermal entropy. The decoherence rate can be well described by the single particle decay rate in our model. Connecting to electroweak baryogenesis scenarios, we moreover study the effects on the entropy of a changing mass of the system field. Finally, we compare our correlator approach to existing approaches to decoherence in the simple quantum mechanical analogue of our field theoretical model. The entropy following from the perturbative master equation suffers from physically unacceptable secular growth.
We formulate a novel approach to decoherence based on neglecting observationally inaccessible correlators. We apply our formalism to a renormalised interacting quantum field theoretical model. Using out-of-equilibrium field theory techniques we show that the Gaussian von Neumann entropy for a pure quantum state increases to the interacting thermal entropy. This quantifies decoherence and thus measures how classical our pure state has become. The decoherence rate is equal to the single particle decay rate in our model. We also compare our approach to existing approaches to decoherence in a simple quantum mechanical model. We show that the entropy following from the perturbative master equation suffers from physically unacceptable secular growth.
We study decoherence in a simple quantum mechanical model using two approaches. Firstly, we follow the conventional approach to decoherence where one is interested in solving the reduced density matrix from the perturbative master equation. Secondly, we consider our novel correlator approach to decoherence where entropy is generated by neglecting observationally inaccessible correlators. We show that both methods can accurately predict decoherence time scales. However, the perturbative master equation generically suffers from instabilities which prevents us to reliably calculate the systems total entropy increase. We also discuss the relevance of the results in our quantum mechanical model for interacting field theories.
It is well known that loss of information about a system, for some observer, leads to an increase in entropy as perceived by this observer. We use this to propose an alternative approach to decoherence in quantum field theory in which the machinery o f renormalisation can systematically be implemented: neglecting observationally inaccessible correlators will give rise to an increase in entropy of the system. As an example we calculate the entropy of a general Gaussian state and, assuming the observers ability to probe this information experimentally, we also calculate the correction to the Gaussian entropy for two specific non-Gaussian states.
Using the worldline method, we derive an effective action of the bosonic sector of the Standard Model by integrating out the fermionic degrees of freedom. The CP violation stemming from the complex phase in the CKM matrix gives rise to CP-violating o perators in the one-loop effective action in the next-to-leading order of a gradient expansion. We calculate the prefactor of the appropriate operators and give general estimates of CP violation in the bosonic sector of the Standard Model. In particular, we show that the effective CP violation for weak gauge fields is not suppressed by the Yukawa couplings of the light quarks and is much larger than the bound given by the Jarlskog determinant.
We derive the two-loop effective action for covariantly constant field strength of pure Yang-Mills theory in the presence of an infrared scale. The computation is done in the framework of the worldline formalism, based on a generalization procedure o f constructing multiloop effective actions in terms of the bosonic worldline path integral. The two-loop beta-function is correctly reproduced. This is the first derivation in the worldline formulation, and serves as a nontrivial check on the consistency of the multiloop generalization procedure in the worldline formalism.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا