ترغب بنشر مسار تعليمي؟ اضغط هنا

Domain walls, optimal droplets and disorder chaos at zero temperature are studied numerically for the solid-on-solid model on a random substrate. It is shown that the ensemble of random curves represented by the domain walls obeys Schramms left passa ge formula with kappa=4 whereas their fractal dimension is d_s=1.25, and therefore is NOT described by Stochastic-Loewner-Evolution (SLE). Optimal droplets with a lateral size between L and 2L have the same fractal dimension as domain walls but an energy that saturates at a value of order O(1) for L->infinity such that arbitrarily large excitations exist which cost only a small amount of energy. Finally it is demonstrated that the sensitivity of the ground state to small changes of order delta in the disorder is subtle: beyond a cross-over length scale L_delta ~ 1/delta the correlations of the perturbed ground state with the unperturbed ground state, rescaled by the roughness, are suppressed and approach zero logarithmically.
We develop a theory for fluctuations and correlations in a gas evolving under ballistic annihilation dynamics. Starting from the hierarchy of equations governing the evolution of microscopic densities in phase space, we subsequently restrict to a reg ime of spatial homogeneity, and obtain explicit predictions for the fluctuations and time correlation of the total number of particles, total linear momentum and total kinetic energy. Cross-correlations between these quantities are worked out as well. These predictions are successfully tested against Molecular Dynamics and Monte-Carlo simulations. This provides strong support for the theoretical approach developed, including the hydrodynamic treatment of the spectrum of the linearized Boltzmann operator. This article is a companion paper to arXiv:0801.2299 and makes use of the spectral analysis reported there.
We study the non-equilibrium statistical mechanics of a system of freely moving particles, in which binary encounters lead either to an elastic collision or to the disappearance of the pair. Such a system of {em ballistic annihilation} therefore cons tantly looses particles. The dynamics of perturbations around the free decay regime is investigated from the spectral properties of the linearized Boltzmann operator, that characterize linear excitations on all time scales. The linearized Boltzmann equation is solved in the hydrodynamic limit by a projection technique, which yields the evolution equations for the relevant coarse-grained fields and expressions for the transport coefficients. We finally present the results of Molecular Dynamics simulations that validate the theoretical predictions.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا