ترغب بنشر مسار تعليمي؟ اضغط هنا

198 - T. Bryk , T. Scopigno , G. Ruocco 2015
We study autocorrelation functions of energy, heat and entropy densities obtained by molecular dynamics simulations of supercritical Ar and compare them with the predictions of the hydrodynamic theory. It is shown that the predicted by the hydrodynam ic theory single-exponential shape of the entropy density autocorrelation functions is perfectly reproduced for small wave numbers by the molecular dynamics simulations and permits the calculation of the wavenumber-dependent specific heat at constant pressure. The estimated wavenumber-dependent specific heats at constant volume and pressure, $C_{v}(k)$ and $C_{p}(k)$, are shown to be in the long-wavelength limit in good agreement with the macroscopic experimental values of $C_{v}$ and $C_{p}$ for the studied thermodynamic points of supercritical Ar.
Using Gaussian integral transform techniques borrowed from functional-integral field theory and the replica trick we derive a version of the coherent-potential approximation (CPA) suited for describing ($i$) the diffusive (hopping) motion of classica l particles in a random environment and ($ii$) the vibrational properties of materials with spatially fluctuating elastic coefficients in topologically disordered materials. The effective medium in the present version of the CPA is not a lattice but a homogeneous and isotropic medium, representing an amorphous material on a mesoscopic scale. The transition from a frequency-independent to a frequency-dependent diffusivity (conductivity) is shown to correspond to the boson peak in the vibrational model. The anomalous regimes above the crossover are governed by a complex, frequency-dependent self energy. The boson peak is shown to be stronger for non-Gaussian disorder than for Gaussian disorder. We demonstrate that the low-frequency non-analyticity of the off-lattice version of the CPA leads to the correct long-time tails of the velocity autocorrelation function in the hopping problem and to low-frequency Rayleigh scattering in the wave problem. Furthermore we show that the present version of the CPA is capable to treat the percolative aspects of hopping transport adequately.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا