ترغب بنشر مسار تعليمي؟ اضغط هنا

196 - M. Gellert , G. Rudiger 2009
We investigate the instability and nonlinear saturation of temperature-stratified Taylor-Couette flows in a finite height cylindrical gap and calculate angular-momentum transport in the nonlinear regime. The model is based on an incompressible fluid in Boussinesq approximation with a positive axial temperature gradient applied. While both ingredients itself, the differential rotation as well as the stratification due to the temperature gradient, are stable, together the system becomes subject of the stratorotational instability and nonaxisymmetric flow pattern evolve. This flow configuration transports angular momentum outwards and will therefor be relevant for astrophysical applications. The belonging viscosity $alpha$ coefficient is of the order of unity if the results are adapted to the size of an accretion disc. The strength of the stratification, the fluids Prandtl number and the boundary conditions applied in the simulations are well-suited too for a laboratory experiment using water and a small temperature gradient below five Kelvin. With such a rather easy realizable set-up the SRI and its angular momentum transport could be measured in an experiment.
67 - M. Gellert , G. Rudiger 2008
Toroidal magnetic fields subject to the Tayler instability can transport angular momentum. We show that the Maxwell and Reynolds stress of the nonaxisymmetric field pattern depend linearly on the shear in the cylindrical gap geometry. Resulting angul ar momentum transport also scales linear with shear. It is directed outwards for astrophysical relevant flows and directed inwards for superrotating flows with dOmega/dR>0. We define an eddy viscosity based on the linear relation between shear and angular momentum transport and show that its maximum for given Prandtl and Hartmann number depends linear on the magnetic Reynolds number Rm. For Rm=1000 the eddy viscosity is of the size of 30 in units of the microscopic value.
We investigate in isothermal MHD simulations the instability of toroidal magnetic fields resulting by the action of z-dependent differential rotation on a given axial field B^0 in a cylindrical enclosure where in particular the helicity of the result ing nonaxisymmetric flow is of interest. The idea is probed that helicity H is related to the external field and the differential rotation as H ~ B^0_i B^0_j Omega_i,j. The observed instability leads to a nonaxisymmetric solution with dominating mode m=1. With the onset of instability both kinematic and current helicity are produced which fulfill the suggested relation. Obviously, differential rotation dOmega/dz only needs an external axial field B^0_z to produce remarkable amounts of the helicities. Any regular time-dependency of the helicity could not be found. The resulting axial alpha-effect is mainly due to the current helicity, the characteristic time scale between both the values is of order of the rotation time. If the axial field is switched off then the helicity and the alpha-effect disappear.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا