ترغب بنشر مسار تعليمي؟ اضغط هنا

Clarifying the interplay of interactions and disorder is fundamental to the understanding of many quantum systems, including superfluid helium in porous media, granular and thin-film superconductors, and light propagating in disordered media. One cen tral aspect for bosonic systems is the competition between disorder, which tends to localize particles, and weak repulsive interactions, which instead have a delocalizing effect. Since the required degree of independent control of the disorder and of the interactions is not easily achievable in most available physical systems, a systematic experimental investigation of this competition has so far not been possible. Here we employ an ultracold atomic Bose-Einstein condensate with tunable repulsive interactions in a quasi-periodic lattice potential to study this interplay in detail. We characterize the entire delocalization crossover through the study of the average local shape of the wavefunction, the spatial correlations, and the phase coherence. Three different regimes are identified and compared with theoretical expectations: an exponentially localized Anderson glass, the formation of locally coherent fragments, as well as a coherent, extended state. Our results illuminate the role of weak repulsive interactions on disordered bosonic systems and show that the system and the techniques we employ are promising for further investigations of disordered systems with interactions, also in the strongly correlated regime.
We study the role played by the magnetic dipole interaction in an atomic interferometer based on an alkali Bose-Einstein condensate with tunable scattering length. We tune the s-wave interaction to zero using a magnetic Feshbach resonance and measure the decoherence of the interferometer induced by the weak residual interaction between the magnetic dipoles of the atoms. We prove that with a proper choice of the scattering length it is possible to compensate for the dipolar interaction and extend the coherence time of the interferometer. We put in evidence the anisotropic character of the dipolar interaction by working with two different experimental configurations for which the minima of decoherence are achieved for a positive and a negative value of the scattering length, respectively. Our results are supported by a theoretical model we develop. This model indicates that the magnetic dipole interaction should not represent a serious source of decoherence in atom interferometers based on Bose-Einstein condensates.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا