ترغب بنشر مسار تعليمي؟ اضغط هنا

Recent time-resolved spectral studies of a few Active Galactic Nuclei in hard X-rays revealed occultations of the X-ray primary source probably by Broad Line Region (BLR) clouds. An important open question on the structure of the circumnuclear medium of AGN is whether this phenomenon is common, i.e. whether a significant fraction of the X-ray absorption in AGN is due to BLR clouds. Here we present the first attempt to perform this kind of analysis in a homogeneous way, on a statistically representative sample of AGN, consisting of the ~40 brightest sources with long XMM-Newton and/or Suzaku observations. We describe our method, based on a simple analysis of hardness-ratio light curves, and its validation through a complete spectroscopic analysis of a few cases. We find that X-ray eclipses, most probably due to clouds at the distance of the BLR, are common in sources where the expected occultation time is compatible with the observation time, while they are not found in sources with longer estimated occultation times. Overall, our results show that occultations by BLR clouds may be responsible for most of the observed X-ray spectral variability at energies higher than 2 keV, on time scales longer than a few ks.
62 - L. W. Brenneman 2012
We present jointly analyzed data from three deep Suzaku observations of NGC 1365. These high signal-to-noise spectra enable us to examine the nature of this variable, obscured AGN in unprecedented detail on timescales ranging from hours to years. We find that, in addition to the power-law continuum and absorption from ionized gas seen in most AGN, inner disk reflection and variable absorption from neutral gas within the Broad Emission Line Region are both necessary components in all three observations. We confirm the clumpy nature of the cold absorbing gas, though we note that occultations of the inner disk and corona are much more pronounced in the high-flux state (2008) than in the low-flux state (2010) of the source. The onset and duration of the dips in the X-ray light curve in 2010 are both significantly longer than in 2008, however, indicating that either the distance to the gas from the black hole is larger, or that the nature of the gas has changed between epochs. We also note significant variations in the power-law flux over timescales similar to the cold absorber, both within and between the three observations. The warm absorber does not vary significantly within observations, but does show variations in column density of a factor of more than 10 on timescales less than 2 weeks that seem unrelated to the changes in the continuum, reflection or cold absorber. By assuming a uniform iron abundance for the reflection and absorption, we have also established that an iron abundance of roughly 3.5 times the solar value is sufficient to model the broad-band spectrum without invoking an additional partial-covering absorber. Such a measurement is consistent with previous published constraints from the 2008 Suzaku observation alone, and with results from other Seyfert AGN in the literature.
78 - Junfeng Wang 2010
We present new X-ray spectral data for the Seyfert 1 nucleus in NGC 4151 observed with Chandra for 200 ks. A significant ACIS pileup is present, resulting in a non-linear count rate variation during the observation. With pileup corrected spectral fit ting, we are able to recover the spectral parameters and find consistency with those derived from unpiled events in the ACIS readout streak and outer region from the bright nucleus. The absorption corrected 2-10 keV flux of the nucleus varied between 6E-11 and 1E-10 erg s^{-1} cm^{-2}. Similar to earlier Chandra studies of NGC 4151 at a historical low state, the photon indices derived from the same absorbed power-law model are Gamma~0.7-0.9. However, we show that Gamma is highly dependent on the adopted spectral models. Fitting the power-law continuum with a Compton reflection component gives Gamma~1.1. By including passage of non-uniform X-ray obscuring clouds, we can reproduce the apparent flat spectral states with Gamma~1.7, typical for Seyfert 1 AGNs. The same model also fits the hard spectra from previous ASCA long look observation of NGC 4151 in the lowest flux state. The spectral variability during our observation can be interpreted as variations in intrinsic soft continuum flux relative to a Compton reflection component that is from distant cold material and constant on short time scale, or variations of partially covering absorber in the line of sight towards the nucleus. An ionized absorber model with ionization parameter logxi ~ 0.8-1.1 can also fit the low-resolution ACIS spectra. If the partial covering model is correct, adopting a black hole mass M_{BH} ~ 4.6E+7 Msun we constrain the distance of the obscuring cloud from the central black hole to be r<~9 light-days, consistent with the size of broad emission line region of NGC 4151 from optical reverberation mapping.
We present a new Suzaku observation of the obscured AGN in NGC 1365, revealing an unexpected excess of X-rays above 20 keV of at least a factor ~2 with respect to the extrapolation of the best-fitting 3-10 keV model. Additional Swift-BAT and Integral -IBIS observations show that the 20-100 keV is concentrated within ~1.5 arcmin from the center of the galaxy, and is not significantly variable on time scales from days to years. A comparison of this component with the 3-10 keV emission, which is characterized by a rapidly variable absorption, suggests a complex structure of the circumnuclear medium, consisting of at least two distinct components with rather different physical properties, one of which covering >80% of the source with a column density NH~3-4x10^24 cm^(-2). An alternative explanation is the presence of a double active nucleus in the center of NGC 1365.
67 - M. Salvati 2007
We investigate the X-ray properties of the most luminous radio sources in the 3CR catalogue, in order to assess if they are similar to the most luminous radio quiet quasars, for instance in the X-ray normalization with respect to the optical luminosi ty, or in the distribution of the absorption column density. We have selected the (optically identified) 3CR radio sources whose 178-MHz monochromatic luminosity lies in the highest factor-of-three bin. The 4 most luminous objects had already been observed in X rays. Of the remaining 16, we observed with XMM-Newton 4 randomly chosen, optical type 1s, and 4 type 2s. All targets have been detected. The optical-to-Xray spectral index, alphaox, can be computed only for the type 1s and, in agreement with previous studies, is found to be flatter than in radio quiet quasars of similar luminosity. However, the Compton thin type 2s have an absorption corrected X-ray luminosity systematically lower than the type 1s, by a factor which makes them consistent with the radio quiet alphaox. Within the limited statistics, the Compton thick objects seem to have a reflected component more luminous than the Compton thin ones. The extra X-ray component observed in type 1 radio loud quasars is beamed for intrinsic causes, and is not collimated by the absorbing torus as is the case for the (intrinsically isotropic) disk emission. The extra component can be associated with a relativistic outflow, provided that the flow opening angle and the Doppler beaming factor are 1/5 - 1/7 radians.
77 - E. Sani 2007
We present the results of infrared L-band (3-4 micron) and M-band (4-5 micron) VLT-ISAAC spectroscopy of five bright Ultraluminous InfraRed Galaxies (ULIRGs) hosting an AGN. From our analysis we distinguish two types of sources: ULIRGs where the AGN is unobscured (with a flat continuum and no absorption features at 3.4 micron and 4.6 micron), and those with highly obscured AGNs (with a steep, reddened continuum and absorption features due to hydrocarbons and CO). Starburst activity is also present in all of the sources as inferred from the 3.3 micron PAH emission line. A strong correlation is found between continuum slope and CO optical depth, which suggests that deep carbon monoxide absorption is a common feature of highly obscured ULIRG AGN. Finally we show that the AGN dominates the 3-4 micron emission, even if its contribution to the bolometric luminosity is small.
112 - R. Soria 2007
We have studied a highly variable ultraluminous X-ray source (ULX) in the Fornax galaxy NGC 1365, with a series of 12 Chandra and XMM-Newton observations between 2002 and 2006. In 2006 April, the source peaked at a luminosity ~ 3 x 10^{40} erg/s in t he 0.3-10 keV band (similar to the maximum luminosity found by ASCA in 1995), and declined on an e-folding timescale ~ 3 days. The X-ray spectrum is always dominated by a broad power-law-like component. When the source is seen at X-ray luminosities ~ 10^{40} erg/s, an additional soft thermal component (which we interpret as emission from the accretion disk) contributes ~ 1/4 of the X-ray flux; when the luminosity is higher, ~ 3 x 10^{40} erg/s, the thermal component is not detected and must contribute < 10% of the flux. At the beginning of the decline, ionized absorption is detected around 0.5-2 keV; it is a possible signature of a massive outflow. The power-law is always hard, with a photon index Gamma ~ 1.7 (and even flatter at times), as is generally the case with bright ULXs. We speculate that this source and perhaps most other bright ULXs are in a high/hard state: as the accretion rate increases well above the Eddington limit, more and more power is extracted from the inner region of the inflow through non-radiative channels, and is used to power a Comptonizing corona, jet or wind. The observed thermal component comes from the standard outer disk; the transition radius between outer standard disk and Comptonizing inner region moves further out and to lower disk temperatures as the accretion rate increases. This produces the observed appearance of a large, cool disk. Based on X-ray luminosity and spectral arguments, we suggest that this accreting black hole has a likely mass ~ 50-150 Msun (even without accounting for possible beaming).
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا