ترغب بنشر مسار تعليمي؟ اضغط هنا

We optimize chiral interactions at next-to-next-to leading order to observables in two- and three-nucleon systems, and compute Gamow-Teller transitions in carbon-14, oxygen-22 and oxygen-24 using consistent two-body currents. We compute spectra of th e daughter nuclei nitrogen-14, fluorine-22 and fluorine-24 via an isospin-breaking coupled-cluster technique, with several predictions. The two-body currents reduce the Ikeda sum rule, corresponding to a quenching factor q^2 ~ 0.84-0.92 of the axial-vector coupling. The half life of carbon-14 depends on the energy of the first excited 1+ state, the three-nucleon force, and the two-body current.
104 - G. R. Jansen , J. Engel , G. Hagen 2014
We derive and compute effective valence-space shell-model interactions from ab-initio coupled-cluster theory and apply them to open-shell and neutron-rich oxygen and carbon isotopes. Our shell-model interactions are based on nucleon-nucleon and three -nucleon forces from chiral effective-field theory. We compute the energies of ground and low-lying states, and find good agreement with experiment. In particular our calculations are consistent with the N=14, 16 shell closures in oxygen-22 and oxygen-24, while for carbon-20 the corresponding N=14 closure is weaker. We find good agreement between our coupled-cluster effective-interaction results with those obtained from standard single-reference coupled-cluster calculations for up to eight valence neutrons.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا