ترغب بنشر مسار تعليمي؟ اضغط هنا

We study the impact of sampling theorems on the fidelity of sparse image reconstruction on the sphere. We discuss how a reduction in the number of samples required to represent all information content of a band-limited signal acts to improve the fide lity of sparse image reconstruction, through both the dimensionality and sparsity of signals. To demonstrate this result we consider a simple inpainting problem on the sphere and consider images sparse in the magnitude of their gradient. We develop a framework for total variation (TV) inpainting on the sphere, including fast methods to render the inpainting problem computationally feasible at high-resolution. Recently a new sampling theorem on the sphere was developed, reducing the required number of samples by a factor of two for equiangular sampling schemes. Through numerical simulations we verify the enhanced fidelity of sparse image reconstruction due to the more efficient sampling of the sphere provided by the new sampling theorem.
We discuss a novel sampling theorem on the sphere developed by McEwen & Wiaux recently through an association between the sphere and the torus. To represent a band-limited signal exactly, this new sampling theorem requires less than half the number o f samples of other equiangular sampling theorems on the sphere, such as the canonical Driscoll & Healy sampling theorem. A reduction in the number of samples required to represent a band-limited signal on the sphere has important implications for compressive sensing, both in terms of the dimensionality and sparsity of signals. We illustrate the impact of this property with an inpainting problem on the sphere, where we show superior reconstruction performance when adopting the new sampling theorem.
A sampling theorem on the sphere has been developed recently, requiring half as many samples as alternative equiangular sampling theorems on the sphere. A reduction by a factor of two in the number of samples required to represent a band-limited sign al on the sphere exactly has important implications for compressed sensing, both in terms of the dimensionality and sparsity of signals. We illustrate the impact of this property with an inpainting problem on the sphere, where we show the superior reconstruction performance when adopting the new sampling theorem compared to the alternative.
We propose an algorithm for the reconstruction of the signal induced by cosmic strings in the cosmic microwave background (CMB), from radio-interferometric data at arcminute resolution. Radio interferometry provides incomplete and noisy Fourier measu rements of the string signal, which exhibits sparse or compressible magnitude of the gradient due to the Kaiser-Stebbins (KS) effect. In this context the versatile framework of compressed sensing naturally applies for solving the corresponding inverse problem. Our algorithm notably takes advantage of a model of the prior statistical distribution of the signal fitted on the basis of realistic simulations. Enhanced performance relative to the standard CLEAN algorithm is demonstrated by simulated observations under noise conditions including primary and secondary CMB anisotropies.
86 - Y. Wiaux , G. Puy , Y. Boursier 2009
We consider the probe of astrophysical signals through radio interferometers with small field of view and baselines with non-negligible and constant component in the pointing direction. In this context, the visibilities measured essentially identify with a noisy and incomplete Fourier coverage of the product of the planar signals with a linear chirp modulation. In light of the recent theory of compressed sensing and in the perspective of defining the best possible imaging techniques for sparse signals, we analyze the related spread spectrum phenomenon and suggest its universality relative to the sparsity dictionary. Our results rely both on theoretical considerations related to the mutual coherence between the sparsity and sensing dictionaries, as well as on numerical simulations.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا