ترغب بنشر مسار تعليمي؟ اضغط هنا

The yielding behaviour of hard sphere glasses under large amplitude oscillatory shear has been studied by probing the interplay of Brownian motion and shear-induced diffusion at varying oscillation frequencies. Stress, structure and dynamics are foll owed by experimental rheology and Browian Dynamics simulations. Brownian motion assisted cage escape dominates at low frequencies while escape through shear-induced collisions at high ones, both related with a yielding peak in $G^{prime prime}$. At intermediate frequencies a novel, for HS glasses, double peak in $G^{prime prime}$ is revealed reflecting both mechanisms. At high frequencies and strain amplitudes a persistent structural anisotropy causes a stress drop within the cycle after strain reversal, while higher stress harmonics are minimized at certain strain amplitudes indicating an apparent harmonic response.
We present a comprehensive study of the slip and flow of concentrated colloidal suspensions using cone-plate rheometry and simultaneous confocal imaging. In the colloidal glass regime, for smooth, non-stick walls, the solid nature of the suspension c auses a transition in the rheology from Herschel-Bulkley (HB) bulk flow behavior at large stress to a Bingham-like slip behavior at low stress, which is suppressed for sufficient colloid-wall attraction or colloid-scale wall roughness. Visualization shows how the slip-shear transition depends on gap size and the boundary conditions at both walls and that partial slip persist well above the yield stress. A phenomenological model, incorporating the Bingham slip law and HB bulk flow, fully accounts for the behavior. Microscopically, the Bingham law is related to a thin (sub-colloidal) lubrication layer at the wall, giving rise to a characteristic dependence of slip parameters on particle size and concentration. We relate this to the suspensions osmotic pressure and yield stress and also analyze the influence of van der Waals interaction. For the largest concentrations, we observe non-uniform flow around the yield stress, in line with recent work on bulk shear-banding of concentrated pastes. We also describe residual slip in concentrated liquid suspensions, where the vanishing yield stress causes coexistence of (weak) slip and bulk shear flow for all measured rates.
We investigated the viscoelastic properties of colloid-polymer mixtures at intermediate colloid volume fraction and varying polymer concentrations, thereby tuning the attractive interactions. Within the examined range of polymer concentrations, the s amples ranged from fluids to gels. Already in the liquid phase the viscoelastic properties significantly changed when approaching the gelation boundary, indicating the formation of clusters and transient networks. This is supported by an increasing correlation length of the density fluctuations, observed by static light scattering and microscopy. At the same time, the correlation function determined by dynamic light scattering completely decays, indicating the absence of dynamical arrest. Upon increasing the polymer concentration beyond the gelation boundary, the rheological properties changed qualitatively again, now they are consistent with the formation of colloidal gels. Our experimental results, namely the location of the gelation boundary as well as the elastic (storage) and viscous (loss) moduli, are compared to different theoretical models. These include consideration of the escape time as well as predictions for the viscoelastic moduli based on scaling relations and Mode Coupling Theories (MCT).
The rheological properties of highly concentrated suspensions of hard-sphere particles are studied with particular reference to the rheological response of shear induced crystals. Using practically monodisperse hard spheres, we prepare shear induced crystals under oscillatory shear and examine their linear and non-linear mechanical response in comparison with their glassy counterparts at the same volume fraction. It is evident, that shear-induced crystallization causes a significant drop in the elastic and viscous moduli due to structural rearrangements that ease flow. For the same reason the critical (peak of G) and crossover (overlap of G and G) strain are smaller in the crystal compared to the glass at the same volume fraction. When, however the distance from the maximum packing in each state is taken into account the elastic modulus of the crystal is found to be larger than the glass at the same free volume suggesting a strengthened material due to long range order. Finally, shear induced crystals counter-intuitively exhibit similar rheological ageing to the glass (with a logarithmic increase of G), indicating that the shear induced structure is not at thermodynamic equilibrium.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا