ترغب بنشر مسار تعليمي؟ اضغط هنا

130 - P. Facchi , G. Florio , G. Parisi 2015
We study the characterization of multipartite entanglement for the random states of an $n$-qbit system. Unable to solve the problem exactly we generalize it, changing complex numbers into real vectors with $N_c$ components (the original problem is re covered for $N_c=2$). Studying the leading diagrams in the large-$N_c$ approximation, we unearth the presence of a phase transition and, in an explicit example, show that the so-called entanglement frustration disappears in the large-$N_c$ limit.
Recent theoretical advances offer an exact, first-principle theory of jamming criticality in infinite dimension as well as universal scaling relations between critical exponents in all dimensions. For packings of frictionless spheres near the jamming transition, these advances predict that nontrivial power-law exponents characterize the critical distribution of (i) small inter-particle gaps and (ii) weak contact forces, both of which are crucial for mechanical stability. The scaling of the inter-particle gaps is known to be constant in all spatial dimensions $d$ -- including the physically relevant $d=2$ and 3, but the value of the weak force exponent remains the object of debate and confusion. Here, we resolve this ambiguity by numerical simulations. We construct isostatic jammed packings with extremely high accuracy, and introduce a simple criterion to separate the contribution of particles that give rise to localized buckling excitations, i.e., bucklers, from the others. This analysis reveals the remarkable dimensional robustness of mean-field marginality and its associated criticality.
108 - G. Parisi , B. Seoane 2013
We show in numerical simulations that a system of two coupled replicas of a binary mixture of hard spheres undergoes a phase transition in equilibrium at a density slightly smaller than the glass transition density for an unreplicated system. This re sult is in agreement with the theories that predict that such a transition is a precursor of the standard ideal glass transition. The critical properties are compatible with those of an Ising system. The relations of this approach to the conventional approach based on configurational entropy are briefly discussed.
202 - F. L. Metz , L. Leuzzi , G. Parisi 2013
We present strong numerical evidence for the existence of a localization-delocalization transition in the eigenstates of the 1-D Anderson model with long-range hierarchical hopping. Hierarchical models are important because of the well-known mapping between their phases and those of models with short range hopping in higher dimensions, and also because the renormalization group can be applied exactly without the approximations that generally are required in other models. In the hierarchical Anderson model we find a finite critical disorder strength Wc where the average inverse participation ratio goes to zero; at small disorder W < Wc the model lies in a delocalized phase. This result is based on numerical calculation of the inverse participation ratio in the infinite volume limit using an exact renormalization group approach facilitated by the models hierarchical structure. Our results are consistent with the presence of an Anderson transition in short-range models with D > 2 dimensions, which was predicted using renormalization group arguments. Our finding should stimulate interest in the hierarchical Anderson model as a simplified and tractable model of the Anderson localization transition which occurs in finite-dimensional systems with short-range hopping.
We present a mean field model for spin glasses with a natural notion of distance built in, namely, the Edwards-Anderson model on the diluted D-dimensional unit hypercube in the limit of large D. We show that finite D effects are strongly dependent on the connectivity, being much smaller for a fixed coordination number. We solve the non trivial problem of generating these lattices. Afterwards, we numerically study the nonequilibrium dynamics of the mean field spin glass. Our three main findings are: (i) the dynamics is ruled by an infinite number of time-sectors, (ii) the aging dynamics consists on the growth of coherent domains with a non vanishing surface-volume ratio, and (iii) the propagator in Fourier space follows the p^4 law. We study as well finite D effects in the nonequilibrium dynamics, finding that a naive finite size scaling ansatz works surprisingly well.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا