ترغب بنشر مسار تعليمي؟ اضغط هنا

Context. We present the discovery of two transiting extrasolar planets by the satellite CoRoT. Aims. We aim at a characterization of the planetary bulk parameters, which allow us to further investigate the formation and evolution of the planetary sys tems and the main properties of the host stars. Methods. We used the transit light curve to characterize the planetary parameters relative to the stellar parameters. The analysis of HARPS spectra established the planetary nature of the detections, providing their masses. Further photometric and spectroscopic ground-based observations provided stellar parameters (log g,Teff,v sin i) to characterize the host stars. Our model takes the geometry of the transit to constrain the stellar density into account, which when linked to stellar evolutionary models, determines the bulk parameters of the star. Because of the asymmetric shape of the light curve of one of the planets, we had to include the possibility in our model that the stellar surface was not strictly spherical. Results. We present the planetary parameters of CoRoT-28b, a Jupiter-sized planet (mass 0.484+/-0.087MJup; radius 0.955+/-0.066RJup) orbiting an evolved star with an orbital period of 5.208 51 +/- 0.000 38 days, and CoRoT-29b, another Jupiter-sized planet (mass 0.85 +/- 0.20MJup; radius 0.90 +/- 0.16RJup) orbiting an oblate star with an orbital period of 2.850 570 +/- 0.000 006 days. The reason behind the asymmetry of the transit shape is not understood at this point. Conclusions. These two new planetary systems have very interesting properties and deserve further study, particularly in the case of the star CoRoT-29.
We present the radial-velocity follow-up of two Kepler planetary transiting candidates (KOI-189 and KOI-686) carried out with the SOPHIE spectrograph at the Observatoire de Haute Provence. These data promptly discard these objects as viable planet ca ndidates and show that the transiting objects are in the regime of very low-mass stars, where a strong discrepancy between observations and models persists for the mass and radius parameters. By combining the SOPHIE spectra with the Kepler light curve and photometric measurements found in the literature, we obtain a full characterization of the transiting companions, their orbits, and their host stars. The two companions are in significantly eccentric orbits with relatively long periods (30 days and 52.5 days), which makes them suitable objects for a comparison with theoretical models, since the effects invoked to understand the discrepancy with observations are weaker for these orbital distances. KOI-189 B has a mass M = 0.0745 +/- 0.0033 Msun and a radius R = 0.1025 +/- 0.0024 Rsun. The density of KOI-189 B is significantly lower than expected from theoretical models for a system of its age. We explore possible explanations for this difference. KOI-189 B is the smallest hydrogen-burning star with such a precise determination of its fundamental parameters. KOI-686 B is larger and more massive (M = 0.0915 +/- 0.0043 Msun; R = 0.1201 +/- 0.0033 Rsun), and its position in the mass-radius diagram agrees well with theoretical expectations.
The characterization of four new transiting extrasolar planets is presented here. KOI-188b and KOI-195b are bloated hot Saturns, with orbital periods of 3.8 and 3.2 days, and masses of 0.25 and 0.34 M_Jup. They are located in the low-mass range of kn own transiting, giant planets. KOI-192b has a similar mass (0.29 M_Jup) but a longer orbital period of 10.3 days. This places it in a domain where only a few planets are known. KOI-830b, finally, with a mass of 1.27 M_Jup and a period of 3.5 days, is a typical hot Jupiter. The four planets have radii of 0.98, 1.09, 1.2, and 1.08 R_Jup, respectively. We detected no significant eccentricity in any of the systems, while the accuracy of our data does not rule out possible moderate eccentricities. The four objects were first identified by the Kepler Team as promising candidates from the photometry of the Kepler satellite. We establish here their planetary nature thanks to the radial velocity follow-up we secured with the HARPS-N spectrograph at the Telescopio Nazionale Galileo. The combined analyses of the datasets allow us to fully characterize the four planetary systems. These new objects increase the number of well-characterized exoplanets for statistics, and provide new targets for individual follow-up studies. The pre-screening we performed with the SOPHIE spectrograph at the Observatoire de Haute-Provence as part of that study also allowed us to conclude that a fifth candidate, KOI-219.01, is not a planet but is instead a false positive.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا