ترغب بنشر مسار تعليمي؟ اضغط هنا

In this paper we present simulated observations of massive self-gravitating circumstellar discs using the Atacama Large Millimetre/sub-millimetre Array (ALMA). Using a smoothed particle hydrodynamics model of a $0.2M_{odot}$ disc orbiting a $1M_{odot }$ protostar, with a cooling model appropriate for discs at temperatures below $sim 160$K and representative dust opacities, we have constructed maps of the expected emission at sub-mm wavelengths. We have then used the CASA ALMA simulator to generate simulated images and visibilities with various array configurations and observation frequencies, taking into account the expected thermal noise and atmospheric opacities. We find that at 345 GHz (870 $mu$m) spiral structures at a resolution of a few AU should be readily detectable in approximately face-on discs out to distances of the Taurus-Auriga star-forming complex.
In this paper we revisit the arguments for the basis of the time evolution of the flares expected to arise when a star is disrupted by a supermassive black hole. We present a simple analytic model relating the lightcurve to the internal density struc ture of the star. We thus show that the standard lightcurve proportional to $t^{-5/3}$ only holds at late times. Close to the peak luminosity the lightcurve is shallower, deviating more strongly from $t^{-5/3}$ for more centrally concentrated (e.g. solar--type) stars. We test our model numerically by simulating the tidal disruption of several stellar models, described by simple polytropic spheres with index $gamma$. The simulations agree with the analytical model given two considerations. First, the stars are somewhat inflated on reaching pericentre because of the effective reduction of gravity in the tidal field of the black hole. This is well described by a homologous expansion by a factor which becomes smaller as the polytropic index becomes larger. Second, for large polytropic indices wings appear in the tails of the energy distribution, indicating that some material is pushed further away from parabolic orbits by shocks in the tidal tails. In all our simulations, the $t^{-5/3}$ lightcurve is achieved only at late stages. In particular we predict that for solar type stars, this happens only after the luminosity has dropped by at least two magnitudes from the peak. We discuss our results in the light of recent observations of flares in otherwise quiescent galaxies and note the dependence of these results on further parameters, such as the star/hole mass ratio and the stellar orbit.
I review recent progresses in the dynamics and the evolution of self-gravitating accretion discs. Accretion discs are a fundamental component of several astrophysical systems on very diverse scales, and can be found around supermassive black holes in Active Galactic Nuclei (AGN), and also in our Galaxy around stellar mass compact objects and around young stars. Notwithstanding the specific differences arising from such diversity in physical extent, all these systems share a common feature where a central object is fed from the accretion disc, due to the effect of turbulence and disc instabilities, which are able to remove the angular momentum from the gas and allow its accretion. In recent years, it has become increasingly apparent that the gravitational field produced by the disc itself (the discs self-gravity) is an important ingredient in the models, especially in the context of protostellar discs and of AGN discs. Indeed, it appears that in many cases (and especially in the colder outer parts of the disc) the development of gravitational instabilities can be one of the main agents in the redistribution of angular momentum. In some cases, the instability can be strong enough to lead to the formation of gravitationally bound clumps within the disc, and thus to determine the disc fragmentation. As a result, progress in our understanding of the dynamics of self-gravitating discs is essential to understand the processes that lead to the feeding of both young stars and of supermassive black holes in AGN. At the same time, understanding the fragmentation conditions is important to determine under which conditions AGN discs would fragment and form stars and whether protostellar discs might form giant gaseous planets through disc fragmentation.
We investigate the evolution of high redshift seed black hole masses at late times and their observational signatures. The massive black hole seeds studied here form at extremely high redshifts from the direct collapse of pre-galactic gas discs. Popu lating dark matter halos with seeds formed in this way, we follow the mass assembly of these black holes to the present time using a Monte-Carlo merger tree. Using this machinery we predict the black hole mass function at high redshifts and at the present time; the integrated mass density of black holes and the luminosity function of accreting black holes as a function of redshift. These predictions are made for a set of three seed models with varying black hole formation efficiency. Given the accuracy of current observational constraints, all 3 models can be adequately fit. Discrimination between the models appears predominantly at the low mass end of the present day black hole mass function which is not observationally well constrained. However, all our models predict that low surface brightness, bulgeless galaxies with large discs are least likely to be sites for the formation of massive seed black holes at high redshifts. The efficiency of seed formation at high redshifts has a direct influence on the black hole occupation fraction in galaxies at z=0. This effect is more pronounced for low mass galaxies. This is the key discriminant between the models studied here and the Population III remnant seed model. We find that there exists a population of low mass galaxies that do not host nuclear black holes. Our prediction of the shape of the black hole mass - velocity dispersion relation at the low mass end is in agreement with the recent observational determination from the census of low mass galaxies in the Virgo cluster.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا