ترغب بنشر مسار تعليمي؟ اضغط هنا

We present a two stage hybrid inflationary scenario in non-minimal supergravity which can predict values of the tensor-to-scalar ratio of the order of few times 0.01. For the parameters considered, the underlying supersymmetric particle physics model possesses two inflationary paths, the trivial and the semi-shifted one. The trivial path is stabilized by supergravity corrections and supports a first stage of inflation with a limited number of e-foldings. The tensor-to-scalar ratio can become appreciable while the value of the scalar spectral index remains acceptable as a result of the competition between the relatively mild supergravity corrections and the strong radiative corrections to the inflationary potential. The additional number of e-foldings required for solving the puzzles of hot big bang cosmology are generated by a second stage of inflation taking place along the semi-shifted path. This is possible only because the semi-shifted path is almost perpendicular to the trivial one and, thus, not affected by the strong radiative corrections along the trivial path and also because the supergravity effects remain mild. The requirement that the running of the scalar spectral index remains acceptable limits the possible values of the tensor-to-scalar ratio not to exceed about 0.05. Our model predicts the formation of an unstable string-monopole network, which may lead to detectable gravity wave signatures in future space-based laser interferometer observations.
We analyze the parametric space of the constrained minimal supersymmetric standard model (CMSSM) with mu>0 supplemented by a generalized asymptotic Yukawa coupling quasi-unification condition which yields acceptable masses for the fermions of the thi rd family. We impose constraints from the cold dark matter abundance in the universe and its direct detection experiments, the B-physics, as well as the masses of the sparticles and the lightest neutral CP-even Higgs boson, m_h. We identify two distinct allowed regions with M_{1/2}>m_0 and m_0>>M_{1/2} classified in the hyperbolic branch of the radiative electroweak symmetry breaking. In the first region we obtain, approximately, 44<=tan beta<=52, -3<=A_0/M_{1/2}<=0.1, 122<=m_h/GeV<=127, and mass of the lightest sparticle in the range (0.75-1.43) TeV. Such heavy lightest sparticle masses can become consistent with the cold dark matter requirement on the lightest sparticle relic density thanks to neutralino-stau coannihilations. In the latter region, fixing m_h to its central value from the LHC, we find a wider allowed parameter space with milder electroweak-symmetry-breaking fine-tuning, 40<=tanbeta<=50, -11<=A_0/M_{1/2}<=15 and mass of the lightest sparticle in the range (0.09-1.1) TeV. This sparticle is possibly detectable by the present cold dark matter direct search experiments.
We analyze the parametric space of the constrained minimal supersymmetric standard model with mu>0 supplemented by a generalized asymptotic Yukawa coupling quasi-unification condition which yields acceptable masses for the fermions of the third famil y. We impose constraints from the cold dark matter abundance in the universe and its direct detection experiments, the B-physics, as well as the masses of the sparticles and the lightest neutral CP-even Higgs boson. Fixing the mass of the latter to its central value from the LHC and taking 40<=tanbeta<=50, we find a relatively wide allowed parameter space with -11<=A_0/M_{1/2}<=15 and mass of the lightest sparticle in the range (0.09-1.1) TeV. This sparticle is possibly detectable by the present cold dark matter direct search experiments. The required fine-tuning for the electroweak symmetry breaking is much milder than the one needed in the neutralino-stau coannihilation region of the same model.
A simple extension of the minimal left-right symmetric supersymmetric grand unified theory model is constructed by adding two pairs of superfields. This naturally violates the partial Yukawa unification predicted by the minimal model. After including supergravity corrections, we find that this extended model naturally supports hilltop F-term hybrid inflation along its trivial inflationary path with only a very mild tuning of the initial conditions. With a convenient choice of signs of the terms in the Kahler potential, we can reconcile the inflationary scale with the supersymmetric grand unified theory scale. All the current data on the inflationary observables are readily reproduced. Inflation is followed by non-thermal leptogenesis via the decay of the right-handed neutrinos emerging from the decay of the inflaton and any possible washout of the lepton asymmetry is avoided thanks to the violation of partial Yukawa unification. The extra superfields also assist us in reducing the reheat temperature so as to satisfy the gravitino constraint. The observed baryon asymmetry of the universe is naturally reproduced consistently with the neutrino oscillation parameters.
We consider the extended supersymmetric Pati-Salam model which, for mu>0 and universal boundary conditions, succeeds to yield experimentally acceptable b-quark masses by moderately violating Yukawa unification. It is known that this model can lead to new shifted or new smooth hybrid inflation. We show that a successful two-stage inflationary scenario can be realized within this model based only on renormalizable superpotential interactions. The cosmological scales exit the horizon during the first stage of inflation, which is of the standard hybrid type and takes place along the trivial flat direction with the inflaton driven by radiative corrections. Spectral indices compatible with the recent data can be achieved in global supersymmetry or minimal supergravity by restricting the number of e-foldings of our present horizon during the first inflationary stage. The additional e-foldings needed for solving the horizon and flatness problems are naturally provided by a second stage of inflation, which occurs mainly along the built-in new smooth hybrid inflationary path appearing right after the destabilization of the trivial flat direction at its critical point. Monopoles are formed at the end of the first stage of inflation and are, subsequently, diluted by the second stage of inflation to become utterly negligible in the present universe for almost all (for all) the allowed values of the parameters in the case of global supersymmetry (minimal supergravity).
We consider the extension of the supersymmetric Pati-Salam model which solves the b-quark mass problem of supersymmetric grand unified models with exact Yukawa unification and universal boundary conditions and leads to the so-called new shifted hybri d inflationary scenario. We show that this model can also lead to a new version of smooth hybrid inflation based only on renormalizable interactions provided that a particular parameter of its superpotential is somewhat small. The potential possesses valleys of minima with classical inclination, which can be used as inflationary paths. The model is consistent with the fitting of the three-year Wilkinson microwave anisotropy probe data by the standard power-law cosmological model with cold dark matter and a cosmological constant. In particular, the spectral index turns out to be adequately small so that it is compatible with the data. Moreover, the Pati-Salam gauge group is broken to the standard model gauge group during inflation and, thus, no monopoles are formed at the end of inflation. Supergravity corrections based on a non-minimal Kaehler potential with a convenient choice of a sign keep the spectral index comfortably within the allowed range without generating maxima and minima of the potential on the inflationary path. So, unnatural restrictions on the initial conditions for inflation can be avoided.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا