ترغب بنشر مسار تعليمي؟ اضغط هنا

166 - G. Konya , G. Szirmai , P. Domokos 2014
We present a general theory for calculating the damping rate of elementary density wave excitations in a Bose-Einstein condensate strongly coupled to a single radiation field mode of an optical cavity. Thereby we give a detailed derivation of the hug e resonant enhancement in the Beliaev damping of a density wave mode, predicted recently by Konya et al., Phys.~Rev.~A 89, 051601(R) (2014). The given density-wave mode constitutes the polariton-like soft mode of the self-organization phase transition. The resonant enhancement takes place, both in the normal and ordered phases, outside the critical region. We show that the large damping rate is accompanied by a significant frequency shift of this polariton mode. Going beyond the Born-Markov approximation and determining the poles of the retarded Greens function of the polariton, we reveal a strong coupling between the polariton and a collective mode in the phonon bath formed by the other density wave modes.
374 - G. Konya , G. Szirmai , D. Nagy 2013
We show that the damping rate of elementary excitations of hybrid systems close to a phase transition can undergo a remarkable resonance like enhancement before mode softening takes place. In particular, we consider the friction of a collective densi ty wave in a homogeneous superfluid of weakly interacting bosonic atoms coupled to the electromagnetic field of a single mode optical resonator. Here the Beliaev damping can thus be controlled by an external laser drive and be enhanced by several orders of magnitude.
187 - G. Konya , D. Nagy , G. Szirmai 2012
Laser-driven Bose-Einstein condensate of ultracold atoms loaded into a lossy high-finesse optical resonator exhibits critical behavior and, in the thermodynamic limit, a phase transition between stationary states of different symmetries. The system r ealizes an open-system variant of the celebrated Dicke-model. We study the transition for a finite number of atoms by means of a Hartree-Fock-Bogoliubov method adapted to a damped-driven open system. The finite-size scaling exponents are determined and a clear distinction between the non-equilibrium and the equilibrium quantum criticality is found.
We develop a mean-field model describing the Hamiltonian interaction of ultracold atoms and the optical field in a cavity. The Bose-Einstein condensate is properly defined by means of a grand-canonical approach. The model is efficient because only th e relevant excitation modes are taken into account. However, the model goes beyond the two-mode subspace necessary to describe the self-organization quantum phase transition observed recently. We calculate all the second-order correlations of the coupled atom field and radiation field hybrid bosonic system, including the entanglement between the two types of fields.
169 - D. Nagy , G. Konya , G. Szirmai 2009
We show that the motion of a laser-driven Bose-Einstein condensate in a high-finesse optical cavity realizes the spin-boson Dicke-model. The quantum phase transition of the Dicke-model from the normal to the superradiant phase corresponds to the self -organization of atoms from the homogeneous into a periodically patterned distribution above a critical driving strength. The fragility of the ground state due to photon measurement induced back action is calculated.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا