ترغب بنشر مسار تعليمي؟ اضغط هنا

261 - D. Larson 2014
We examine the consistency of WMAP9 and Planck data. We compare sky maps, power spectra, and inferred LCDM cosmological parameters. Residual dipoles are seen in the WMAP and Planck sky map differences, but are consistent within the uncertainties and are not large enough to explain the widely-noted differences in angular power spectra at higher l. After removing residual dipoles and galactic foregrounds, the residual difference maps exhibit a quadrupole and other large-scale systematic structure. We identify this structure as possibly originating from Plancks beam sidelobe pick-up, but note that it appears to have insignificant cosmological impact. We develop an extension of the internal linear combination technique and find features that plausibly originate in the Planck data. We examine LCDM model fits to the angular power spectra and conclude that the ~2.5% difference in the spectra at multipoles greater than l~100 are significant at the 3-5 sigma level. We revisit the analysis of WMAPs beam data and conclude that previously-derived uncertainties are robust and cannot explain the power spectrum differences. Finally, we examine the consistency of the LCDM parameters inferred from each data set taking into account the fact that both experiments observe the same sky, but cover different multipole ranges, apply different sky masks, and have different noise. While individual parameter values agree within the uncertainties, the 6 parameters taken together are discrepant at the ~6 sigma level, with chi2=56 for 6 dof (PTE = 3e-10). Of the 6 parameters, chi2 is best improved by marginalizing over Omega_c h^2, giving chi2=5.2 for 5 degrees of freedom. We find that perturbing the WMAP window function by its dominant beam error profile has little effect on Omega_c h^2, while perturbing the Planck window function by its corresponding error profile has a much greater effect on Omega_c h^2.
We present cosmological parameter constraints based on the final nine-year WMAP data, in conjunction with additional cosmological data sets. The WMAP data alone, and in combination, continue to be remarkably well fit by a six-parameter LCDM model. Wh en WMAP data are combined with measurements of the high-l CMB anisotropy, the BAO scale, and the Hubble constant, the densities, Omegabh2, Omegach2, and Omega_L, are each determined to a precision of ~1.5%. The amplitude of the primordial spectrum is measured to within 3%, and there is now evidence for a tilt in the primordial spectrum at the 5sigma level, confirming the first detection of tilt based on the five-year WMAP data. At the end of the WMAP mission, the nine-year data decrease the allowable volume of the six-dimensional LCDM parameter space by a factor of 68,000 relative to pre-WMAP measurements. We investigate a number of data combinations and show that their LCDM parameter fits are consistent. New limits on deviations from the six-parameter model are presented, for example: the fractional contribution of tensor modes is limited to r<0.13 (95% CL); the spatial curvature parameter is limited to -0.0027 (+0.0039/-0.0038); the summed mass of neutrinos is <0.44 eV (95% CL); and the number of relativistic species is found to be 3.84+/-0.40 when the full data are analyzed. The joint constraint on Neff and the primordial helium abundance agrees with the prediction of standard Big Bang nucleosynthesis. We compare recent PLANCK measurements of the Sunyaev-Zeldovich effect with our seven-year measurements, and show their mutual agreement. Our analysis of the polarization pattern around temperature extrema is updated. This confirms a fundamental prediction of the standard cosmological model and provides a striking illustration of acoustic oscillations and adiabatic initial conditions in the early universe.
(Abridged) We present the angular power spectra derived from the 7-year maps and discuss the cosmological conclusions that can be inferred from WMAP data alone. The third acoustic peak in the TT spectrum is now well measured by WMAP. In the context o f a flat LambdaCDM model, this improvement allows us to place tighter constraints on the matter density from WMAP data alone, and on the epoch of matter-radiation equality, The temperature-polarization (TE) spectrum is detected in the 7-year data with a significance of 20 sigma, compared to 13 sigma with the 5-year data. The low-l EE spectrum, a measure of the optical depth due to reionization, is detected at 5.5 sigma significance when averaged over l = 2-7. The BB spectrum, an important probe of gravitational waves from inflation, remains consistent with zero. The upper limit on tensor modes from polarization data alone is a factor of 2 lower with the 7-year data than it was using the 5-year data (Komatsu et al. 2010). We test the parameter recovery process for bias and find that the scalar spectral index, ns, is biased high, but only by 0.09 sigma, while the remaining parameters are biased by < 0.15 sigma. The improvement in the third peak measurement leads to tighter lower limits from WMAP on the number of relativistic degrees of freedom (e.g., neutrinos) in the early universe: Neff > 2.7 (95% CL). Also, using WMAP data alone, the primordial helium mass fraction is found to be YHe = 0.28+0.14-0.15, and with data from higher-resolution CMB experiments included, we now establish the existence of pre-stellar helium at > 3 sigma (Komatsu et al. 2010).
119 - C. L. Bennett 2010
(Abridged) A simple six-parameter LCDM model provides a successful fit to WMAP data, both when the data are analyzed alone and in combination with other cosmological data. Even so, it is appropriate to search for any hints of deviations from the now standard model of cosmology, which includes inflation, dark energy, dark matter, baryons, and neutrinos. The cosmological community has subjected the WMAP data to extensive and varied analyses. While there is widespread agreement as to the overall success of the six-parameter LCDM model, various anomalies have been reported relative to that model. In this paper we examine potential anomalies and present analyses and assessments of their significance. In most cases we find that claimed anomalies depend on posterior selection of some aspect or subset of the data. Compared with sky simulations based on the best fit model, one can select for low probability features of the WMAP data. Low probability features are expected, but it is not usually straightforward to determine whether any particular low probability feature is the result of the a posteriori selection or of non-standard cosmology. We examine in detail the properties of the power spectrum with respect to the LCDM model. We examine several potential or previously claimed anomalies in the sky maps and power spectra, including cold spots, low quadrupole power, quadropole-octupole alignment, hemispherical or dipole power asymmetry, and quadrupole power asymmetry. We conclude that there is no compelling evidence for deviations from the LCDM model, which is generally an acceptable statistical fit to WMAP and other cosmological data.
We present new full-sky temperature and polarization maps in five frequency bands from 23 to 94 GHz, based on data from the first five years of the WMAP sky survey. The five-year maps incorporate several improvements in data processing made possible by the additional years of data and by a more complete analysis of the instrument calibration and in-flight beam response. We present several new tests for systematic errors in the polarization data and conclude that Ka band data (33 GHz) is suitable for use in cosmological analysis, after foreground cleaning. This significantly reduces the overall polarization uncertainty. With the 5 year WMAP data, we detect no convincing deviations from the minimal 6-parameter LCDM model: a flat universe dominated by a cosmological constant, with adiabatic and nearly scale-invariant Gaussian fluctuations. Using WMAP data combined with measurements of Type Ia supernovae and Baryon Acoustic Oscillations, we find (68% CL uncertainties): Omega_bh^2 = 0.02267 pm 0.00059, Omega_ch^2 = 0.1131 pm 0.0034, Omega_Lambda = 0.726 pm 0.015, n_s = 0.960 pm 0.013, tau = 0.084 pm 0.016, and Delta_R^2 = (2.445 pm 0.096) x 10^-9. From these we derive: sigma_8 = 0.812 pm 0.026, H_0 = 70.5 pm 1.3 km/s/Mpc, z_{reion} = 10.9 pm 1.4, and t_0 = 13.72 pm 0.12 Gyr. The new limit on the tensor-to-scalar ratio is r < 0.22 (95% CL). We obtain tight, simultaneous limits on the (constant) dark energy equation of state and spatial curvature: -0.14 < 1+w < 0.12 and -0.0179 < Omega_k < 0.0081 (both 95% CL). The number of relativistic degrees of freedom (e.g. neutrinos) is found to be N_{eff} = 4.4 pm 1.5, consistent with the standard value of 3.04. Models with N_{eff} = 0 are disfavored at >99.5% confidence.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا