ترغب بنشر مسار تعليمي؟ اضغط هنا

Why 80% of planetary nebulae are not spherical is not yet understood. The Binary Hypothesis states that a companion to the progenitor of the central star of a planetary nebula is required to shape the nebula and even for a planetary nebula to be form ed at all. A way to test this hypothesis is to estimate the binary fraction of central stars of planetary nebula and to compare it with the main sequence population. Preliminary results from photometric variability and infrared excess techniques indicate that the binary fraction of central stars of planetary nebulae is higher than that of the putative main sequence progenitor population, implying that PNe could be preferentially formed via a binary channel. This article briefly reviews these results and future studies aiming to refine the binary fraction.
There is no quantitative theory to explain why a high 80% of all planetary nebulae are non-spherical. The Binary Hypothesis states that a companion to the progenitor of a central star of planetary nebula is required to shape the nebula and even for a planetary nebula to be formed at all. A way to test this hypothesis is to estimate the binary fraction of central stars of planetary nebulae and to compare it with that of the main sequence population. Preliminary results from photometric variability and the infrared excess techniques indicate that the binary fraction of central stars of planetary nebulae is higher than that of the main sequence, implying that PNe could preferentially form via a binary channel. This article briefly reviews these results and current studies aiming to refine the binary fraction.
The light element abundance pattern from many planetary nebulae (PNe) covering the upper 4 mag. of the [O III] luminosity function was observed with ESO VLT FORS1 multi-slit. Spectra of 51 PNe over the wavelength range 3500-7500 Angstrom were obtaine d in three fields at 4, 8 and 17 kpc, for a distance of 3.8 Mpc. Emission line ratios are entirely typical of PN such as in the Milky Way. The temperature sensitive [O III]4363A line was weakly detected in 10 PNe, both [O II] and [O III] lines were detected in 30 PNe, and only the bright [O III]5007A line in 7 PN. Cloudy photoionization models were run to match the spectra by a spherical, constant density nebula ionized by a black body central star. He, N, O and Ne abundances with respect to H were determined and, for brighter PNe, S and Ar; central star luminosities and temperatures are also derived. For 40 PNe with Cloudy models, from the upper 2 mag. of the luminosity function, the most reliably estimated element, oxygen, has a mean 12+log(O/H) of 8.52. No obvious radial gradient is apparent in O/H over a range 2-20 kpc. Comparison of the PN abundances with the stellar population, from the spectra of the integrated starlight on the multi-slits and photometric studies, suggests [Fe/H]=-0.4 and [O/Fe]=0.25. The masses of the PN central stars in NGC 5128 from model tracks imply an epoch of formation more recent than for the minority young population from colour-magnitude studies. The PNe progenitors may belong to the young tail of a recent, minor, star formation episode or derive from other evolutionary channels.[Abridged]
The Kepler Observatory offers unprecedented photometric precision (<1 mmag) and cadence for monitoring the central stars of planetary nebulae, allowing the detection of tiny periodic light curve variations, a possible signature of binarity. With this precision free from the observational gaps dictated by weather and lunar cycles, we are able to detect companions at much larger separations and with much smaller radii than ever before. We have been awarded observing time to obtain light-curves of the central stars of the six confirmed and possible planetary nebulae in the Kepler field, including the newly discovered object Kn 61, at cadences of both 30 min and 1 min. Of these six objects, we could confirm for three a periodic variability consistent with binarity. Two others are variables, but the initial data set presents only weak periodicities. For the central star of Kn 61, Kepler data will be available in the near future.
The Planetary Nebulae Luminosity Function (PNLF) describes the collective luminosity evolution for a given population of Planetary Nebulae (PN). A major paradox in current PNLF studies is in the universality of the absolute magnitude of the brightest PNe with galaxy type and age. The progenitor central-star mass required to produce such bright PNe should have evolved beyond the PNe phase in old, red elliptical galaxies whose stellar populations are ~10~Gyr. Only by dissecting this resolved population in detail can we attempt to address this conundrum. The Bulge of our Galaxy is predominantly old citep{Z03} and can therefore be used as a proxy for an elliptical galaxy, but with the significant advantage that the population is resolvable from ground based telescopes. We have used the MOSAIC-II camera on the Blanco 4-m at CTIO to carefully target ~80 square degrees of the Galactic Bulge and establish accurate [Oiii] fluxes for 80% of Bulge PNe currently known from the Acker and MASH catalogues. Construction of the [Oiii] Bulge PNLF has allowed us to investigate placement of PNe population sub-sets according to morphology and spectroscopic properties the PNLF and most importantly, whether any population subset might constitute the bright end of the LF. Our excellent, deep data also offers exciting prospects for significant new PNe discoveries and [Oiii] morphological studies.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا