ترغب بنشر مسار تعليمي؟ اضغط هنا

84 - S. E. Dahm , G. H. Herbig , 2011
IC 1274 is a faintly luminous nebula lying on the near surface of the Lynds 227 (L227) molecular cloud. Four luminous, early-type (B0-B5) stars are located within a spherical volume ~5 in diameter that appears to be clear of heavy obscuration. Approx imately centered in the cleared region is the B0 V star HD 166033, which is thought to be largely responsible for the cavitys excavation. Over 80 H-alpha emission sources brighter than V~21 have been identified in the region. More than half of these are concentrated in IC 1274 and are presumably members of a faint T Tauri star population. Chandra Advanced CCD Imaging Spectrometer (ACIS) imaging of a nearby suspected pulsar and time-variable gamma-ray source (GeV J1809-2327) detected 21 X-ray sources in the cluster vicinity, some of which are coincident with the early-type stars and H-alpha emitters in IC 1274. Deep (V~22) optical BVRI photometry has been obtained for the cluster region. A distance of 1.82 +/- 0.3 kpc and a mean extinction of Av ~1.21 +/- 0.2 mag follow from photometry of the early-type stars. Using pre-main-sequence evolutionary models, we derive a median age for the H-alpha emitters and X-ray sources of ~1 Myr; however, a significant dispersion is present. Our interpretation of the structure of IC 1274 is that the early-type stars formed recently and are in the process of dispersing the molecular gas on the near surface of L227. The displaced material was driven against what remains of the molecular cloud to the east, enabling the formation of the substantial number of T Tauri stars found there. We identify a V~21.5 star very near the position of X-ray source 5, the assumed gamma-ray source and young pulsar candidate. The lack of distinctive characteristics for this source, however, coupled with the density of faint stars in this region suggest that this may be a random superposition.
61 - G. H. Herbig 2008
IC 2144 is a small reflection nebula located in the zone of avoidance near the Galactic anticenter. It has been investigated here largely on the basis of Keck/HIRES optical spectroscopy (R ~ 48,000) and a SpeX spectrogram in the near-IR (R = 2000) ob tained at the NASA IRTF. The only star in the nebula that is obvious in the optical or near-IR is the peculiar emission-line object MWC 778 (V = 12.8), which resembles a T Tauri star in some respects. What appear to be F- or G-type absorption features are detectable in its optical region under the very complex emission line spectrum; their radial velocity agrees with the CO velocity of the larger cloud in which IC 2144 is embedded. There are significant differences between the spectrum of the brightest area of the nebula and of MWC 778, the presumed illuminator, an issue discussed in some detail. The distance of IC 2144 is inferred to be about 1.0 kpc by reference to other star-forming regions in the vicinity. The extinction is large, as demonstrated by [Fe II] emission line ratios in the near-IR and by the strength of the diffuse interstellar band spectrum; a provisional value of A_V of 3.0 mag was assumed. The SED of MWC 778 rises steeply beyond about 1 $mu$m, with a slope characteristic of a Class I source. Integration of the flux distribution leads to an IR luminosity of about 510 L_solar. If MWC 778 is indeed a F- or G-type pre--main-sequence star several magnitudes above the ZAMS, a population of faint emission Halpha stars would be expected in the vicinity. Such a search, like other investigations that are recommended in this paper, has yet to be carried out.
218 - P. P. Petrov , G. H. Herbig 2008
New high-resolution spectra of FU Ori, obtained with the HIRES spectrograph at the Keck I telescope in 2003-2006, make it possible to compare the optical line profiles with those predicted by the self-luminous accretion disk model. A dependence of li ne width on excitation potential and on wavelength, expected for a Keplerian disk, is definitely not present in the optical region, nor is the line duplicity due to velocity splitting. The absorption lines observed in the optical region of FU Ori must originate in or near the central object, and here their profiles are shown to be those expected of a rigidly rotating object. They can be fitted by a rapidly rotating (v sin i = 70 km/s) high-luminosity G-type star having a large dark polar spot, with axis inclined toward the line of sight. Over these years, the radial velocity of FU Ori has remained constant to within +/-0.3 km/s, so there is no indication that the star is a spectroscopic binary. These results apply to the optical region ($lambda< 8800$ AA); more distant, cooler regions of the disk contribute in the infrared.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا