ترغب بنشر مسار تعليمي؟ اضغط هنا

We employed micro-focused Brillouin light scattering to study the amplification of the thermal spin wave eigenmodes by means of a pure spin current, generated by the spin-Hall effect, in a transversely magnetized Pt(4nm)/NiFe(4nm)/SiO2(5nm) layered n anowire with lateral dimensions 500x2750 nm2. The frequency and the cross section of both the center (fundamental) and the edge spin wave modes have been measured as a function of the intensity of the injected dc electric current. The frequency of both modes exhibits a clear redshift while their cross section is greatly enhanced on increasing the intensity of the injected dc. A threshold-like behavior is observed for a value of the injected dc of 2.8 mA. Interestingly an additional mode, localized in the central part of the nanowire, appears at higher frequency on increasing the intensity of the injected dc above the threshold value. Micromagnetic simulations were used to quantitatively reproduce the experimental results and to investigate the complex non-linear dynamics induced by the spin-Hall effect, including the modification of the spatial profile of the spin wave modes and the appearance of the extra mode above the threshold.
243 - G. Gubbiotti , M.C. Nucci 2014
The classical quantization of a family of a quadratic Li{e}nard-type equation (Li{e}nard II equation) is achieved by a quantization scheme (M.~C. Nucci. {em Theor. Math. Phys.}, 168:994--1001, 2011) that preserves the Noether point symmetries of the underlying Lagrangian in order to construct the Schrodinger equation. This method straightforwardly yields the Schrodinger equation as given in (A.~Ghose~Choudhury and Partha Guha. {em J. Phys. A: Math. Theor.}, 46:165202, 2013).
119 - G. Gubbiotti , M.C. Nucci 2013
The classical quantization of a Lienard-type nonlinear oscillator is achieved by a quantization scheme (M.C. Nucci. Theor. Math. Phys., 168:997--1004, 2011) that preserves the Noether point symmetries of the underlying Lagrangian in order to construc t the Schrodinger equation. This method straightforwardly yields the correct Schrodinger equation in the momentum space (V. Chithiika Ruby, M. Senthilvelan, and M. Lakshmanan. J. Phys. A: Math. Gen., 45:382002, 2012), and sheds light into the apparently remarkable connection with the linear harmonic oscillator.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا