ترغب بنشر مسار تعليمي؟ اضغط هنا

We investigate experimentally transport in gated microsctructures containing a band-inverted HgTe/Hg_{0.3}Cd_{0.7}Te quantum well. Measurements of nonlocal resistances using many contacts prove that in the depletion regime the current is carried by t he edge channels, as expected for a two-dimensional topological insulator. However, high and non-quantized values of channel resistances show that the topological protection length (i.e. the distance on which the carriers in helical edge channels propagate without backscattering) is much shorter than the channel length, which is ~100 micrometers. The weak temperature dependence of the resistance and the presence of temperature dependent reproducible quasi-periodic resistance fluctuations can be qualitatively explained by the presence of charge puddles in the well, to which the electrons from the edge channels are tunnel-coupled.
We report on experiments allowing to set an upper limit on the magnitude of the spin Hall effect and the conductance by edge channels in quantum wells of PbTe embedded between PbEuTe barriers. We reexamine previous data obtained for epitaxial microst ructures of n-type PbSe and PbTe, in which pronounced nonlocal effects and reproducible magnetoresistance oscillations were found. Here we show that these effects are brought about by a quasi-periodic network of threading dislocations adjacent to the BaF$_2$ substrate, which give rise to a p-type interfacial layer and an associated parasitic parallel conductance. We then present results of transport measurements on microstructures of modulation doped PbTe/(Pb,Eu)Te:Bi heterostructures for which the influence of parasitic parallel conductance is minimized, and for which quantum Hall transport had been observed, on similar samples, previously. These structures are of H-shaped geometry and they are patterned of 12 nm thick strained PbTe quantum wells embedded between Pb$_{0.92}$Eu$_{0.08}$Te barriers. The structures have different lateral sizes corresponding to both diffusive and ballistic electron transport in non-equivalent L valleys. For these structures no nonlocal resistance is detected confirming that PbTe is a trivial insulator. The magnitude of spin Hall angle gamma is estimated to be smaller than 0.02 for PbTe/PbEuTe microstructures in the diffusive regime.
The authors report on electron transport studies on superconductor-semiconductor hybrid structures of indium and n-type lead telluride, either in the form of quantum wells or bulk crystals. In-PbTe contacts form by spontaneous alloying, which occurs already at room temperature. The alloyed phase penetrates deeply into PbTe and forms metallic contacts even in the presence of depletion layers at the semiconductor surface. Although the detailed structure of this phase is unknown, we observe that it exhibits a superconducting transition at temperatures below 10 K. This causes such substantial reduction of the contact resistances that they even become comparable to those predicted for ideal superconductor-normal conductor contacts. Most importantly, this result indicates that the interface phase in the superconducting state becomes nearly homogeneous - in contrast to the structure expected for alloyed contacts. We suggest that the unusual interface superconductivity is linked to the unique properties of PbTe, namely, its huge static dielectric constant. Apparently the alloyed interface phase contains superconducting precipitates randomly distributed within the depletion layers, and their Coulomb charging energies are extremely small. According to the existing models of the granular superconductivity, even very weak Josephson coupling between the neighboring precipitates gives rise to the formation of a global superconducting phase which explains our observations.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا