ترغب بنشر مسار تعليمي؟ اضغط هنا

We consider a uniform superfluid confined in two compartments connected by a superleak and initially held at equal temperatures. If one of the two compartments is heated, a fraction of the superfluid will flow through the superleak. We show that, und er certain thermodynamic conditions, the atoms flow from the hotter to the colder compartment, contrary to what happens in the fountain effect observed in superfluid Helium. This flow causes quantum degeneracy to increase in the colder compartment. In superfluid Helium, this novel thermomechanical effect takes place in the phonon regime of very low temperatures. In dilute quantum gases, it occurs at all temperatures below Tc . The increase in quantum degeneracy reachable through the adiabatic displacement of the wall separating the two compartments is also discussed.
We report on the realization of dynamical control of transport for ultra-cold Sr88 atoms loaded in an accelerated and amplitude-modulated 1D optical lattice. We tailor the energy dispersion of traveling wave packets and reversibly switch between Wann ier-Stark localization and driven transport based on coherent tunneling. Within a Loschmidt-echo scheme where the atomic group velocities are reversed at once, we demonstrate a novel mirror for matter waves working independently of the momentum state and discuss possible applications to force measurements at micrometric scales.
We report about the realization of a quantum device for force sensing at micrometric scale. We trap an ultracold $^{88}$Sr atomic cloud with a 1-D optical lattice, then we place the atomic sample close to a test surface using the same optical lattice as an elevator. We demonstrate precise positioning of the sample at the $mu$m scale. By observing the Bloch oscillations of atoms into the 1-D optical standing wave, we are able to measure the total force on the atoms along the lattice axis, with a spatial resolution of few microns. We also demonstrate a technique for transverse displacement of the atoms, allowing to perform measurements near either transparent or reflective test surfaces. In order to reduce the minimum distance from the surface, we compress the longitudinal size of the atomic sample by means of an optical tweezer. Such system is suited for studies of atom-surface interaction at short distance, such as measurement of Casimir force and search for possible non-Newtonian gravity effects.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا