ترغب بنشر مسار تعليمي؟ اضغط هنا

The inferred value of the relic density from cosmological observations has reached a precision that is akin to that of the LEP precision measurements. This level of precision calls for the evaluation of the annihilation cross sections of dark matter that goes beyond tree-level calculations as currently implemented in all codes for the computation of the relic density. In supersymmetry radiative corrections are known to be large and thus must be implemented. Full one-loop radiative corrections for many annihilation processes have been performed. It is important to investigate whether the bulk of these corrections can be parameterised through an improved Born approximation that can be implemented as a selection of form factors to a tree-level code. This paper is a second in a series that addresses this issue. After having provided these form factors for the annihilation of the neutralinos into fermions, which cover the case of a bino-like LSP (Lightest Supersymmetric Particle), we turn our attention here to a higgsino-like dark matter candidate through its annihilation into $ZZ$. We also investigate the cases of a mixed LSP. In all cases we compare the performance of the form factor approach with the result of a full one-loop correction. We also study the issue of the renormalisation scheme dependence. An illustration of the phenomenon of non decoupling of the heavy sfermions that takes place for the annihilation of the lightest neutralino into $ZZ$ is also presented.
Spurred by the discovery of a boson resonance at the LHC as the result of the search for the Standard Model Higgs, we pursue our investigation of the properties and signatures of Higgses in an effective supersymmetric scenario that goes beyond the us ual MSSM. Such scenarios were first introduced to alleviate the naturalness problem of the MSSM Higgs and are found to have a very rich phenomenology that allows departures from the Standard Model in the production rate of the Higgs in many of the search channels. We now include the constraints from flavour observables in particular the rare decays b-> s gamma and Bs -> mu+ mu- including the recent measurement from LHCb. We also address the issue of Dark Matter and its impact on Higgs physics. In particular, we incorporate the latest data from XENON100 on the spin independent direct detection rates. These turn out to be powerful constraints, especially if one also imposes that the observed thermal relic density is obtained. We also study models with a low abundance that can more easily evade the direct detection rates. We study the impact of the flavour and Dark Matter observables on the production rates of the Higgs at the LHC, and their correlations in the diphoton, diphoton+jets and 4 leptons. We also comment on the other channels.
The recent results from the ATLAS and CMS collaborations show that the allowed range for a Standard Model Higgs boson is now restricted to a very thin region. Although those limits are presented exclusively in the framework of the SM, the searches th emselves remain sensitive to other Higgs models. We recast the limits within a generic supersymmetric framework that goes beyond the usual minimal extension. Such a generic model can be parameterised through a supersymmetric effective Lagrangian with higher order operators appearing in the Kahler potential and the superpotential, an approach whose first motivation is to alleviate the fine-tuning problem in supersymmetry with the most dramatic consequence being a substantial increase in the mass of the lightest Higgs boson as compared to the minimal supersymmetic model. We investigate in this paper the constraints set by the LHC on such models. We also investigate how the present picture will change when gathering more luminosity. Issues of how to combine and exploit data from the LHC dedicated to searches for the standard model Higgs to such supersymmetry inspired scenarios are discussed. We also discuss the impact of invisible decays of the Higgs in such scenarios.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا