ترغب بنشر مسار تعليمي؟ اضغط هنا

4U 1630-472 is a recurrent X-ray transient classified as a black-hole candidate from its spectral and timing properties. One of the peculiarities of this source is the presence of regular outbursts with a recurrence period between 600 and 730 d that has been observed since the discovery of the source in 1969. We report on a comparative study on the spectral and timing behaviour of three consecutive outbursts occurred in 2006, 2008 and 2010. We analysed all the data collected by the INTErnational Gamma-Ray Astrophysics Laboratory (INTEGRAL) and the Rossi X-ray timing Explorer (RXTE) during these three years of activity. We show that, in spite of having a similar spectral and timing behaviour in the energy range between 3 and 30 keV, these three outbursts show pronounced differences above 30 keV. In fact, the 2010 outburst extends at high energies without any detectable cut-off until 150-200 keV, while the two previous outbursts that occurred in 2006 and 2008 are not detected at all above 30 keV. Thus, in spite of a very similar accretion disk evolution, these three outbursts exhibit totally different characteristics of the Compton electron corona, showing a softening in their evolution rarely observed before in a low mass X-ray binary hosting a black hole. We argue the possibility that the unknown perturbation that causes the outbursts to be equally spaced in time could be at the origin of this particular behaviour. Finally we describe several possible scenarios that could explain the regularity of the outbursts, identifying the most plausible, such as a third body orbiting around the binary system.
83 - G. De Cesare 2011
The first detection of a gamma ray line with an energy of about 500 keV from the center our Galaxy dates back to the early seventies. Thanks to the astrophysical application of high spectral resolution detectors, it was soon clear that this radiation was due to the 511 keV photons generated by electron-positron annihilation. Even though the physical process are known, the astrophysical origin of this radiation is still a mystery. The spectrometer SPI aboard the INTEGRAL gamma-ray satellite has been used to produce the first all-sky map in light of the 511 keV annihilation, but no direct evidence for 511 keV galactic compact objects has been found [...] We present the first deep IBIS 511 keV all-sky map, obtained by applying standard analysis to about 5 years of data. Possible 511 keV signals are also searched over hour-day-month timescales. The IBIS sensitivity at 511 keV depends on the detector quantum efficiency at this energy and on the background. Both these quantities were estimated in this work. We find no evidence of Galactic 511 keV point sources. With an exposure of 10 Ms in the center of the Galaxy, we estimate a $1.6 times 10^{-4},ph,cm^{-2},s^{-1}$ flux 2 sigma upper limit. A similar limit is given in a wide area in the Galactic center region with similar exposures. The IBIS 511 keV flux upper limits for microquasars and supernova remnants detected in the hard X domain ($E > 20, keV$) are also reported. Our results are consistent with a diffuse $e^{+}e^{-}$ annihilation scenario. If positrons are generated in compact objects, we expect that a significant fraction of them propagate in the interstellar medium before there are annihilated away from their birth places.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا