ترغب بنشر مسار تعليمي؟ اضغط هنا

112 - R. Singla , G. Cotugno , S. Kaiser 2014
We use midinfrared pulses with stable carrier-envelope phase offset to drive molecular vibrations in the charge transfer salt ET-F2TCNQ, a prototypical one-dimensional Mott insulator. We find that the Mott gap, which is probed resonantly with 10 fs l aser pulses, oscillates with the pump field. This observation reveals that molecular excitations can coherently perturb the electronic on-site interactions (Hubbard U) by changing the local orbital wave function. The gap oscillates at twice the frequency of the vibrational mode, indicating that the molecular distortions couple quadratically to the local charge density.
Femtosecond relaxation of photo-excited quasiparticles in the one dimensional Mott insulator ET-F2TCNQ are measured as a function of external pressure, which is used to tune the electronic structure. By fitting the static optical properties and measu ring femtosecond decay times at each pressure value, we correlate the relaxation rates with the electronic bandwidth t and on the intersite correlation energy V. The scaling of relaxation times with microscopic parameters is different than for metals and semiconductors. The competition between localization and delocalization of the Mott-Hubbard exciton dictates the efficiency of the decay, as exposed by a fit based on the solution of the time-dependent extended Hubbard Hamiltonian.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا