ترغب بنشر مسار تعليمي؟ اضغط هنا

The alleged mistakes in recent papers that reanalyze the backgrounds to the LSND anomaly do not exist. We maintain our conclusion that the significance of the LSND anomaly is not 3.8 sigma but not larger than 2.3 sigma.
This paper, together with a preceding paper, questions the so-called LSND anomaly: a 3.8 sigma excess of antielectronneutrino interactions over standard backgrounds, observed by the LSND Collaboration in a beam dump experiment with 800 MeV protons. T hat excess has been interpreted as evidence for the antimuonneutrino to antielectronneutrino oscillation in the Deltam2 range from 0.2 eV2 to 2 eV2. Such a Deltam2 range is incompatible with the widely accepted model of oscillations between three light neutrino species and would require the existence of at least one light sterile neutrino. In a preceding paper, it was concluded that the estimates of standard backgrounds must be significantly increased. In this paper, the LSND Collaborations estimate of the number of antielectronneutrino interactions followed by neutron capture, and of its error, is questioned. The overall conclusion is that the significance of the LSND anomaly is not larger than 2.3 sigma.
We report on double-differential inclusive cross-sections of the production of secondary protons, charged pions, and deuterons, in the interactions with a 5% {lambda}int thick stationary aluminium target, of proton and pion beams with momentum from p m3 GeV/c to pm15 GeV/c. Results are given for secondary particles with production angles between 20 and 125 degrees. Cross-sections on aluminium nuclei are compared with cross-sections on beryllium, carbon, copper, tin, tantalum and lead nuclei.
This paper, together with a subsequent paper, questions the so-called LSND anomaly: a 3.8 {sigma} excess of anti-electronneutrino interactions over standard backgrounds, observed by the LSND Collaboration in a beam dump experiment with 800 MeV proton s. That excess has been interpreted as evidence for the anti-muonneutrino{to} anti-electronneutrino oscillation in the {Delta}m2 range from 0.2 eV2 to 2 eV2. Such a {Delta}m2 range is incompatible with the widely accepted model of oscillations between three light neutrino species and would require the existence of at least one light sterile neutrino. In this paper, new data on pion production by protons on nuclei are presented, and four decades old data on pion production by neutrons on nuclei are recalled, that together increase significantly the estimates of standard backgrounds in the LSND experiment, and decrease the significance of the LSND anomaly from 3.8 {sigma} to 2.9 {sigma}. In a subsequent paper, in addition the LSND Collaborations data analysis will be questioned, rendering a further reduction of the significance of the LSND anomaly.
We report on double-differential inclusive cross-sections of the production of secondary protons, charged pions, and deuterons, in the interactions with a 5% nuclear interaction length thick stationary tin target, of proton and pion beams with moment um from pm3 GeV/c to pm15 GeV/c. Results are given for secondary particles with production angles between 20 and 125 degrees. Cross-sections on tin nuclei are compared with cross-sections on beryllium, carbon, copper, tantalum and lead nuclei.
We report on double-differential inclusive cross-sections of the production of secondary protons, deuterons, and charged pions and kaons, in the interactions with a 5% nuclear interaction length thick stationary beryllium target, of a +8.9 GeV/c prot on and pion beam, and a -8.0 GeV/c pion beam. Results are given for secondary particles with production angles between 20 and 125 degrees.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا